Classification of Surfaces of Coordinate Finite Type in the Lorentz–Minkowski 3-Space
Abstract
:1. Introduction
2. Basic Concepts
3. Proof of the Main Results
3.1. Type I
- has zero mean curvature;
- is an open piece of the pseudo-sphere centered at the origin with radius c;
- is an open piece of the hyperbolic space centered at the origin with radius c.
3.2. Type II
- has zero mean curvature;
- is an open piece of the pseudo-sphere centered at the origin with real radius c;
- is an open piece of the hyperbolic space centered at the origin with real radius c.
3.3. Type III
- has zero mean curvature;
- is an open piece of the pseudo sphere of real radius c;
- is an open piece of the hyperbolic space of real radius c.
- is an open part of catenoid of the 1st kind, the 2nd kind, the 3rd kind, the 4th kind, or the 5th kind.
- is an open part of the surface of Enneper of the 2nd kind or the 3rd kind,
- is an open part of the pseudo sphere centered at the origin with radius c,
- is an open part of the hyperbolic space centered at the origin with radius c.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.-Y. Total Mean Curvature and Submanifolds of Finite Type, 2nd ed.; World Scientific Publisher: Singapore, 2014. [Google Scholar]
- Chen, B.-Y.; Dillen, F.; Verstraelen, L.; Vrancken, L. Ruled Surfaces of finite type. Bull. Austral. Math. Soc. 1990, 42, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-Y.; Dillen, F. Quadrices of finite type. J. Geom. 1990, 38, 16–22. [Google Scholar] [CrossRef]
- Chen, B.-Y. Surfaces of finite type in Euclidean 3-space. Bull. Soc. Math. Belg. 1987, 39, 243–254. [Google Scholar]
- Denever, F.; Deszcz, R.; Verstraelen, L. The compact cyclides of Dupin and a conjecture by B.-Y Chen. J. Geom. 1993, 46, 33–38. [Google Scholar] [CrossRef]
- Baikoussis, C.; Verstraelen, L. The Chen-Type of the Spiral Surfaces. Results Math. 1995, 28, 214–223. [Google Scholar] [CrossRef]
- Chen, B.-Y. A report on submanifolds of finite type. Soochow J. Math. 1996, 22, 117–337. [Google Scholar]
- Takahashi, T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 1966, 18, 380–385. [Google Scholar] [CrossRef]
- Garay, O. On a certain class of finite type surfaces of revolution. Kodai Math. J. 1988, 11, 25–31. [Google Scholar] [CrossRef]
- Dilen, F.; Pas, J.; Verstraelen, L. On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 1990, 13, 10–21. [Google Scholar] [CrossRef]
- Baikoussis, C.; Chen, B.-Y.; Verstraelen, L. Ruled Surfaces and tubes with finite type Gauss map. Tokyo J. Math. 1993, 16, 341–349. [Google Scholar] [CrossRef]
- Baikoussis, C.; Denever, F.; Emprechts, P.; Verstraelen, L. On the Gauss map of the cyclides of Dupin. Soochow J. Math. 1993, 19, 417–428. [Google Scholar]
- Baikoussis, C.; Verstraelen, L. On the Gauss map of helicoidal surfaces. Rend. Semi. Mat. Messina Ser. II 1993, 16, 31–42. [Google Scholar]
- Al-Zoubi, H.; Alzaareer, H.; Hamadneh, T.; Al Rawajbeh, M. Tubes of coordinate finite type Gauss map in the Euclidean 3-space. Indian J. Math. 2020, 62, 171–182. [Google Scholar]
- Dilen, F.; Pas, J.; Verstraelen, L. On the Gauss map of surfaces of revolution. Bull. Inst. Math. Acad. Sin. 1990, 18, 239–246. [Google Scholar]
- Stamatakis, S.; Al-Zoubi, H. On surfaces of finite Chen-type. Results Math. 2003, 43, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Al-Zoubi, H.; Stamatakis, S. Ruled and quadric surfaces satisfying ΔIIIx = Ax. J. Geom. Graph. 2016, 20, 147–157. [Google Scholar]
- Al-Zoubi, H.; Stamatakis, S.; Al Mashaleh, W.; Awadallah, M. Translation surfaces of coordinate finite type. Indian J. Math. 2017, 59, 227–241. [Google Scholar]
- Al-Zoubi, H.; Stamatakis, S.; Jaber, K. Tubes of finite Chen-type. Commun. Korean Math. Soc. 2018, 33, 581–590. [Google Scholar]
- Stamatakis, S.; Al-Zoubi, H. Surfaces of revolution satisfying ΔIIIx = Ax. J. Geom. Graph. 2010, 14, 181–186. [Google Scholar]
- Al-Zoubi, H.; Hamadneh, T.; Abu Hammad, M.; Al Sabbagh, M. Tubular Surfaces of finite type Gauss map. J. Geom. Graph. 2021, 25, 45–52. [Google Scholar]
- Kim, Y.H.; Lee, C.W.; Yoon, D.W. On the Gauss map of surfaces of revolution without parabolic points. Bull. Korean Math. Soc. 2009, 46, 1141–1149. [Google Scholar] [CrossRef] [Green Version]
- Kaimakamis, G.; Papantoniou, B. Surfaces of revolution in the three-dimensional Lorentz–Minkowski space satisfying ΔII = A. Results Math. 2004, 81, 81–92. [Google Scholar]
- Bekkar, M.; Zoubir, H. Surfaces of Revolution in the 3Dimensional Lorentz–Minkowski Space Satisfying Δxi = λixi. Int. J. Contemp. Math. Sci. 2008, 3, 1173–1185. [Google Scholar]
- Choi, M.; Kim, Y.H.; Yoon, D.W. Some classification of surfaces of revolution in Minkowski 3-space. J. Geom. 2013, 104, 85–106. [Google Scholar] [CrossRef]
- Alías, L.J.; Ferrández, A.; Lucas, P. Submanifolds in pseudo-Euclidean spaces satisfying the condition Δx = Ax+b. Geom. Dedicata 1992, 42, 345–354. [Google Scholar] [CrossRef]
- Hamed, C.B.; Bekkar, M. Helicoidal Surfaces in the three-dimensional Lorentz–Minkowski space satisfying Δxi = λixi. Int. J. Contemp. Math. Sci. 2009, 4, 311–327. [Google Scholar]
- Mhailan, M.; Abu Hammad, M.; Al Horani, M.; Khalil, R. On fractional vector analysis. J. Math. Comput. Sci. 2020, 10, 2320–2326. [Google Scholar]
- Al-Zoubi, H.; Al-Zu’bi, S.; Stamatakis, S.; Almimi, H. Ruled surfaces of finite Chen-type. J. Geom. Graph. 2018, 22, 15–20. [Google Scholar]
- Ki, U.-H.; Kim, D.-S.; Kim, Y.H.; Roh, Y.-M. Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space. Taiwan J. Math. 2009, 13, 317–338. [Google Scholar] [CrossRef]
- Van De Woestijne, I. Minimal surfaces of three-dimensional Minkowski space. In Geometry and Topolgy of Submanifolds; Boyorn, M., Morvan, J.M., Verstraelen, L., Eds.; World Scientific Publisher: Singapore, 1990; pp. 344–369. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zoubi, H.; Akbay, A.K.; Hamadneh, T.; Al-Sabbagh, M. Classification of Surfaces of Coordinate Finite Type in the Lorentz–Minkowski 3-Space. Axioms 2022, 11, 326. https://doi.org/10.3390/axioms11070326
Al-Zoubi H, Akbay AK, Hamadneh T, Al-Sabbagh M. Classification of Surfaces of Coordinate Finite Type in the Lorentz–Minkowski 3-Space. Axioms. 2022; 11(7):326. https://doi.org/10.3390/axioms11070326
Chicago/Turabian StyleAl-Zoubi, Hassan, Alev Kelleci Akbay, Tareq Hamadneh, and Mutaz Al-Sabbagh. 2022. "Classification of Surfaces of Coordinate Finite Type in the Lorentz–Minkowski 3-Space" Axioms 11, no. 7: 326. https://doi.org/10.3390/axioms11070326
APA StyleAl-Zoubi, H., Akbay, A. K., Hamadneh, T., & Al-Sabbagh, M. (2022). Classification of Surfaces of Coordinate Finite Type in the Lorentz–Minkowski 3-Space. Axioms, 11(7), 326. https://doi.org/10.3390/axioms11070326