Novel Global Harmony Search Algorithm for General Linear Complementarity Problem
Abstract
:1. Introduction
2. Preliminaries and LCP as Optimization Model
3. NGHS Algorithm
3.1. HS Algorithm
3.2. NGHS Algorithm
4. Computational Results
4.1. Problems
4.1.1. LCP with a Unique Solution
4.1.2. LCP with Multiple Solutions
4.1.3. LCP without Solution
4.2. Parameters Setting
4.3. Results and Analysis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemke, C.E.; Howson, J.T. Equilibrium points of bimatrix games. SIAM J. Appl. Math. 1964, 12, 413–423. [Google Scholar] [CrossRef]
- Cottle, R.W.; Pang, J.S.; Stone, R.E. The Linear Complementarity Problems; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Karmarkar, N. A new polynomial-time algorithm for linear programming. Combinatorica 1984, 4, 373–395. [Google Scholar] [CrossRef]
- Kojima, M. A polynomial-time algorithm for a class of linear complementary problems. Math. Program. 1989, 44, 1–26. [Google Scholar] [CrossRef]
- Kojima, M.; Megiddo, N.; Mizuno, S. A primal-dual infeasible-interior-point algorithm for linear programming. Math. Program. 1993, 61, 263–280. [Google Scholar] [CrossRef]
- Zhang, Y. On the Convergence of a Class of Infeasible-Interior-Point Methods for the Horizontal Linear Complementarity Problem. SIMA J. Optim. 1994, 4, 208–227. [Google Scholar] [CrossRef]
- Wright, S.J. An Infeasible-Interior-Point Algorithm for Linear Complementarily Problems. Math. Program. 1994, 67, 29–52. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, S. Computation of Error Bounds for P-matrix Linear Complementarity Problems. Math. Program. 2006, 106, 513–525. [Google Scholar] [CrossRef]
- Chen, J.-S. On some NCP-functions based on the generalized Fischer-burmeister function. Asia-Pac. J. Oper. Res. 2007, 24, 401–420. [Google Scholar] [CrossRef]
- Gao, L.; Wang, Y.; Li, C. New error bounds for the linear complementarity problem of QN-matrices. Numer. Algorithms 2017, 77, 1–14. [Google Scholar] [CrossRef]
- Dai, P.F. Error bounds for linear complementarity problems of DB-matrices. Linear Algebra Its Appl. 2016, 53, 647–657. [Google Scholar] [CrossRef]
- Bai, Y.Q.; Lesaja, G.; Roos, C. A new class of polynomial interior-point algorithms for P*(κ)-linear complementary problems. Pac. J. Optim. 2008, 4, 248–263. [Google Scholar]
- Mansouri, H.; Pirhaji, M. A Polynomial Interior-Point Algorithm for Monotone Linear Complementarity Problems. J. Optim. Theory Appl. 2013, 157, 451–461. [Google Scholar] [CrossRef]
- Chen, J.-S.; Ko, C.-H.; Pan, S. A neural network based on the generalized Fischer–Burmeister function for nonlinear complementarity problems. Inf. Sci. 2010, 180, 697–711. [Google Scholar] [CrossRef]
- Dai, P.F.; Li, J.C.; Li, Y.T.; Bai, J. A general preconditioner for linear complementarity problem with an M-matrix. J. Comput. Appl. Math. 2017, 317, 100–112. [Google Scholar] [CrossRef]
- Kheirfam, B.; Haghighi, M. An infeasible interior-point method for the P*-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step. Commun. Comb. Optim. 2018, 3, 51–70. [Google Scholar]
- Kheirfam, B.; Chitsaz, M. Polynomial convergence of two higher order interior-point methods for P*(κ)-LCP in a wide neighborhood of the central path. Period. Math. Hungar. 2018, 76, 243–264. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X. Smoothing Projected Gradient Method and Its Application to Stochastic Linear Complementarity Problems. SIAM J. Optim. 2009, 20, 627–649. [Google Scholar] [CrossRef]
- WANG, G.Q. A new polynomial interior-point algorithm for the monotone linear complementarity problem over symmetric cones with full NT-steps. Asia-Pac. J. Oper. Res. 2012, 29, 1250015. [Google Scholar] [CrossRef]
- Luo, Z.; Qi, L.; Xiu, N. The sparsest solutions to Z -tensor complementarity problems. Optim. Lett. 2017, 11, 471–482. [Google Scholar] [CrossRef]
- Song, Y.; Qi, L. Tensor Complementarity Problem and Semi-positive Tensors. J. Optim. Theory Appl. 2016, 169, 1069–1078. [Google Scholar] [CrossRef]
- Che, M.; Qi, L.; Wei, Y. Positive-Definite Tensors to Nonlinear Complementarity Problems. J. Optim. Theory Appl. 2016, 168, 475–487. [Google Scholar] [CrossRef]
- Xiao, B. The linear complementarity problem with a parametric input. Eur. J. Oper. Res. 1995, 81, 420–429. [Google Scholar] [CrossRef]
- Adelgren, N.; Wiecek, M.M. A two-phase algorithm for the multiparametric linear complementarity problem. Eur. J. Oper. Res. 2016, 254, 715–738. [Google Scholar] [CrossRef]
- Zhang, J.; He, S.X.; Wang, Q. A SAA nonlinear regularization method for a stochastic extended vertical linear complementarity problem. Appl. Math. Comput. 2014, 232, 888–897. [Google Scholar] [CrossRef]
- Shang, M.; Zhang, C.; Xiu, N. Minimal Zero Norm Solutions of Linear Complementarity Problems. J. Optim. Theory Appl. 2014, 163, 795–814. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, S. Sparse solutions of linear complementarity problems. Math. Program. Ser. A 2015, 159, 539–556. [Google Scholar] [CrossRef]
- Billups, S.C.; Murty, K.G. Complementarity problems. J. Comput. Appl. Math. 2000, 124, 303–318. [Google Scholar] [CrossRef]
- Bai, Z.Z.; Golub, G.H.; Ng, M.K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 2003, 24, 603–626. [Google Scholar] [CrossRef]
- Bai, Z.Z.; Yang, X. On HSS-based iteration methods for weakly nonlinear systems. Appl. Numer. Math. 2009, 59, 2923–2936. [Google Scholar] [CrossRef]
- Jiang, H.; Qi, L. A New Nonsmooth Equations Approach To Nonlinear Complementarity Problems. SIAM J. Control Optim. 1997, 35, 178–193. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [Google Scholar] [CrossRef]
- Bekdaş, G.; Nigdeli, S.M.; Kim, S.; Geem, Z.W. Modified Harmony Search Algorithm-Based Optimization for Eco-Friendly Reinforced Concrete Frames. Sustainability 2022, 14, 3361. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, Z.; Kang, X.; Qu, B.; Qiao, B.; Huan, J.; Chai, X. Multi-Objective Dynamic Economic Emission Dispatch with Electric Vehicle–Wind Power Interaction Based on a Self-Adaptive Multiple-Learning Harmony-Search Algorithm. Energies 2022, 15, 4942. [Google Scholar] [CrossRef]
- Taheri, A.; Makarian, E.; Manaman, N.S.; Ju, H.; Kim, T.-H.; Geem, Z.W.; RahimiZadeh, K. A Fully-Self-Adaptive Harmony Search GMDH-Type Neural Network Algorithm to Estimate Shear-Wave Velocity in Porous Media. Appl. Sci. 2022, 12, 6339. [Google Scholar] [CrossRef]
- Ocak, A.; Nigdeli, S.M.; Bekdaş, G.; Kim, S.; Geem, Z.W. Optimization of Seismic Base Isolation System Using Adaptive Harmony Search Algorithm. Sustainability 2022, 14, 7456. [Google Scholar] [CrossRef]
- Botella Langa, A.; Choi, Y.-G.; Kim, K.-S.; Jang, D.-W. Application of the Harmony Search Algorithm for Optimization of WDN and Assessment of Pipe Deterioration. Appl. Sci. 2022, 12, 3550. [Google Scholar] [CrossRef]
- Ocak, A.; Nigdeli, S.M.; Bekdaş, G.; Kim, S.; Geem, Z.W. Adaptive Harmony Search for Tuned Liquid Damper Optimization under Seismic Excitation. Appl. Sci. 2022, 12, 2645. [Google Scholar] [CrossRef]
- Tuo, S.; Zhang, J.; Yong, L.; Yuan, X.; Liu, B.; Xu, X. A harmony search algorithm for high-dimensional multimodal optimization problems. Digit. Signal Process. 2015, 46, 151–163. [Google Scholar] [CrossRef]
- Zou, D.; Gao, L.; Wu, J.; Li, S.; Li, Y. A novel global harmony search algorithm for reliability problems. Comput. Ind. Eng. 2010, 58, 307–316. [Google Scholar] [CrossRef]
- Zou, D.; Gao, L.; Wu, J.; Li, S. Novel global harmony search algorithm for unconstrained problems. Neurocomputing 2010, 73, 3308–3318. [Google Scholar] [CrossRef]
- Zou, D.; Gao, L.; Li, S.; Wu, J. Solving 0–1 knapsack problem by a novel global harmony search algorithm. Appl. Soft Comput. 2011, 11, 1556–1564. [Google Scholar] [CrossRef]
- Yong, L.; Ding, R.; Zhang, G. Novel Global Harmony Search Algorithm for Monotone Linear Complementarity Problem. ICIC Express Lett. Part B Appl. 2014, 5, 1513–1521. [Google Scholar]
- Kostreva, M.M.; Wiecek, M.M. Linear complementarity problems and multiple objective programming. Math. Program. 1993, 60, 349–359. [Google Scholar] [CrossRef]
- Isac, G.; Kostreva, M.M.; Wiecek, M.M. Multiple-objective approximation of feasible but unsolvable linear complementarity problems. J. Optim. Theory Appl. 1995, 86, 389–405. [Google Scholar] [CrossRef]
- Kostreva, M.M.; Yang, X.Q. Unified approaches for solvable and unsolvable linear complementarity problems. Eur. J. Oper. Res. 2004, 158, 409–417. [Google Scholar] [CrossRef]
- Yong, L.; Liu, S.; Tuo, S.; Gao, K. Improved Harmony Search Algorithm with Chaos for Absolute Value Equation. TELKOMNIKA 2013, 11, 835–844. [Google Scholar] [CrossRef]
- Yong, L.; Liu, S.; Tuo, S. Improved harmony search algorithm for absolute value equation. J. Nat. Sci. Heilongjiang Univ. 2013, 30, 321–327. [Google Scholar] [CrossRef]
LCPs | Algorithm | Best | Mean | Worst | Std | Meantime (s) |
---|---|---|---|---|---|---|
LCP1 n = 3 | HS | 0.00012 | 0.002018 | 0.006212 | 0.002172 | 0.7930772 |
HSCH | 9.53 × 10−8 | 3.17 × 10−7 | 6.51 × 10−7 | 1.89 × 10−7 | 0.8098424 | |
HSWB | 6.24 × 10−8 | 7.69 × 10−7 | 3.53 × 10−6 | 1.03 × 10−6 | 0.8240383 | |
NGHS | 4.93 × 10−30 | 7.66 × 10−29 | 2.33 × 10−28 | 7.28 × 10−29 | 0.8852437 | |
LCP2 n = 10 | HS | 0.049171 | 0.077259 | 0.092279 | 0.012563 | 1.4272887 |
HSCH | 1.08 × 10−7 | 5 × 10−7 | 9.78 × 10−7 | 2.53 × 10−7 | 1.4395747 | |
HSWB | 2.93 × 10−8 | 1.57 × 10−7 | 5.17 × 10−7 | 1.46 × 10−7 | 1.4575034 | |
NGHS | 1.05 × 10−27 | 7.91 × 10−26 | 3.6 × 10−25 | 1.09 × 10−25 | 1.5603642 | |
LCP3 n = 10 | HS | 0.000879 | 0.007951 | 0.018899 | 0.006224 | 1.2304132 |
HSCH | 2.21 × 10−6 | 7.45 × 10−6 | 1.53 × 10−5 | 4.52 × 10−6 | 1.2584141 | |
HSWB | 2.48 × 10−6 | 6.4 × 10−6 | 1.45 × 10−5 | 4.03 × 10−6 | 1.2722705 | |
NGHS | 4.44 × 10−22 | 7.55 × 10−19 | 5.88 × 10−18 | 1.81 × 10−18 | 1.3203617 | |
LCP4 n = 10 | HS | 8.8 × 10−5 | 0.000458 | 0.000849 | 0.000281 | 1.2091804 |
HSCH | 1.46 × 10−9 | 3.52 × 10−9 | 8.17 × 10−9 | 2.06 × 10−9 | 1.228747 | |
HSWB | 5.36 × 10−10 | 1.78 × 10−9 | 3.94 × 10−9 | 1.24 × 10−9 | 1.2424723 | |
NGHS | 0 | 0 | 0 | 0 | 1.3108552 | |
LCP5 n = 4 | HS | 6.71 × 10−5 | 0.014856 | 0.03293 | 0.010225 | 0.8205359 |
HSCH | 1.78 × 10−7 | 5.49 × 10−7 | 1.35 × 10−6 | 3.8 × 10−7 | 0.8371677 | |
HSWB | 1.95 × 10−8 | 1.79 × 10−7 | 6.17 × 10−7 | 1.74 × 10−7 | 0.8490459 | |
NGHS | 0 | 7.44 × 10−31 | 9.86 × 10−31 | 3.55 × 10−31 | 0.9181975 | |
LCP6 n = 10 | HS | 0.000197 | 0.000531 | 0.001297 | 0.000323 | 1.2196362 |
HSCH | 4.01 × 10−10 | 2.39 × 10−9 | 4.95 × 10−9 | 1.37 × 10−9 | 1.2251887 | |
HSWB | 2.91 × 10−10 | 1.3 × 10−9 | 2.42 × 10−9 | 6.24 × 10−10 | 1.2407602 | |
NGHS | 0 | 2.47 × 10−33 | 2.47 × 10−32 | 7.8 × 10−33 | 1.3161821 | |
LCP7 n = 4 | HS | 0.005125 | 0.015587 | 0.030891 | 0.007932 | 0.8171942 |
HSCH | 1.26 × 10−5 | 2.73 × 10−5 | 4.65 × 10−5 | 1.4 × 10−5 | 0.8416201 | |
HSWB | 2.94 × 10−6 | 6 × 10−5 | 0.000436 | 0.000133 | 0.8573362 | |
NGHS | 2.78 × 10−21 | 7.55 × 10−19 | 6.11 × 10−18 | 1.89 × 10−18 | 0.9224063 | |
LCP8 n = 7 | HS | 0.003457 | 0.011776 | 0.046185 | 0.012459 | 0.9173754 |
HSCH | 6.31 × 10−6 | 0.109186 | 1.091539 | 0.345164 | 0.9359316 | |
HSWB | 8.64 × 10−6 | 0.065945 | 0.49082 | 0.158359 | 0.9496413 | |
NGHS | 3.01 × 10−12 | 8.63 × 10−11 | 6.03 × 10−10 | 1.84 × 10−10 | 1.0178789 | |
LCP9 n = 4 | HS | 1.38 × 10−5 | 0.002363 | 0.022127 | 0.006945 | 0.8277304 |
HSCH | 9 × 10−7 | 3.13 × 10−5 | 0.000128 | 3.81 × 10−5 | 0.8443199 | |
HSWB | 3.46 × 10−6 | 4.87 × 10−5 | 0.000227 | 7.57 × 10−5 | 0.8582979 | |
NGHS | 4.19 × 10−28 | 2.24 × 10−27 | 6.97 × 10−27 | 2.14 × 10−27 | 0.9241014 | |
LCP10 n = 6 | HS | 0.012854 | 0.099804 | 0.257314 | 0.088732 | 0.8767348 |
HSCH | 4.5 × 10−5 | 0.000248 | 0.00062 | 0.000173 | 0.8921561 | |
HSWB | 1.41 × 10−5 | 0.000227 | 0.000747 | 0.000251 | 0.9055236 | |
NGHS | 4.6 × 10−23 | 5.11 × 10−14 | 2.94 × 10−13 | 1.07 × 10−13 | 0.9837116 | |
LCP11 n = 5 | HS | 4.63 × 10−5 | 0.006906 | 0.025728 | 0.009857 | 0.8943217 |
HSCH | 1.55 × 10−7 | 1.8 × 10−5 | 6.46 × 10−5 | 2.4 × 10−5 | 0.9109492 | |
HSWB | 7.3 × 10−8 | 6.71 × 10−5 | 0.000493 | 0.000151 | 0.9244671 | |
NGHS | 8.71 × 10−32 | 3.15 × 10−27 | 1 × 10−26 | 3.81 × 10−27 | 0.9889576 | |
LCP12 n = 3 | HS | 4.88 × 10−14 | 1.37 × 10−6 | 9 × 10−6 | 2.98 × 10−6 | 0.8374631 |
HSCH | 2.17 × 10−14 | 1.01 × 10−9 | 5.51 × 10−9 | 1.82 × 10−9 | 0.8581188 | |
HSWB | 3.09 × 10−13 | 9.33 × 10−10 | 7.38 × 10−9 | 2.29 × 10−9 | 0.871607 | |
NGHS | 0 | 0 | 0 | 0 | 0.9422746 | |
LCP13 n = 3 | HS | 2.22 × 10−9 | 3.06 × 10−6 | 1.44 × 10−5 | 5.13 × 10−6 | 0.7916857 |
HSCH | 3.92 × 10−11 | 6.18 × 10−10 | 1.26 × 10−9 | 4.53 × 10−10 | 0.8085951 | |
HSWB | 1 × 10−12 | 4.56 × 10−10 | 2.16 × 10−9 | 6.96 × 10−10 | 0.8221383 | |
NGHS | 0 | 0 | 0 | 0 | 0.9289744 | |
LCP14 n = 5 | HS | 3.56 × 10−5 | 0.00053 | 0.001597 | 0.000515 | 0.848102 |
HSCH | 3.57 × 10−9 | 2.33 × 10−8 | 5.41 × 10−8 | 1.85 × 10−8 | 0.8672321 | |
HSWB | 3.04 × 10−10 | 6.88 × 10−9 | 1.67 × 10−8 | 6.24 × 10−9 | 0.8818419 | |
NGHS | 0 | 6.51 × 10−31 | 1.23 × 10−30 | 4.8 × 10−31 | 0.9494152 | |
LCP15 n = 2 | HS | 0.41112 | 0.411127 | 0.411169 | 1.49 × 10−5 | 0.7566656 |
HSCH | 0.41112 | 0.41112 | 0.41112 | 4.29 × 10−10 | 0.7321389 | |
HSWB | 0.41112 | 0.41112 | 0.41112 | 4.43 × 10−10 | 0.7490452 | |
NGHS | 0.41112 | 0.41112 | 0.41112 | 6.14 × 10−17 | 0.8155493 | |
LCP16 n = 3 | HS | 0.032256 | 0.040354 | 0.063529 | 0.01081 | 0.7415792 |
HSCH | 0.032256 | 0.032256 | 0.032256 | 4.11 × 10−8 | 0.7572208 | |
HSWB | 0.032256 | 0.032256 | 0.032256 | 1.1 × 10−7 | 0.7765369 | |
NGHS | 0.032256 | 0.032256 | 0.032256 | 6.04 × 10−17 | 0.8379764 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, L. Novel Global Harmony Search Algorithm for General Linear Complementarity Problem. Axioms 2022, 11, 370. https://doi.org/10.3390/axioms11080370
Yong L. Novel Global Harmony Search Algorithm for General Linear Complementarity Problem. Axioms. 2022; 11(8):370. https://doi.org/10.3390/axioms11080370
Chicago/Turabian StyleYong, Longquan. 2022. "Novel Global Harmony Search Algorithm for General Linear Complementarity Problem" Axioms 11, no. 8: 370. https://doi.org/10.3390/axioms11080370
APA StyleYong, L. (2022). Novel Global Harmony Search Algorithm for General Linear Complementarity Problem. Axioms, 11(8), 370. https://doi.org/10.3390/axioms11080370