Enumeration of the Additive Degree–Kirchhoff Index in the Random Polygonal Chains
Abstract
:1. Introduction
- with probability ,
- with probability ,
- with probability ,
- ⋮ ⋮ ⋮
- with probability ,
- with probability ,
2. The Additive Degree–Kirchhoff Index in a Random Polygonal Chain
- Case 1.
- . In this case, coincides with the vertex or . Consequently, is given by or with probability .
- Case 2.
- . In this case, coincides with the vertex or . Consequently, is given by or with probability .
- Case 3.
- . In this case, coincides with the vertex or . Consequently, is given by or with probability .
- ⋮ ⋮ ⋮
- Case k − 3.
- . In this case, coincides with the vertex or . Consequently, is given by or with probability .
- Case k − 2.
- . In this case, coincides with the vertex or . Consequently, is given by or with probability .
- Case k − 1.
- . In this case, coincides with the vertex or . Consequently, is given by or with probability .
- Case k.
- , then is the vertex . Consequently, is given by with probability .
3. The Average Value for the Additive Degree–Kirchhoff Index
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Bai, Y.; Zhao, B.; Zhao, P. Extremal Merrifield-Simmons index and Hosoya index of polyphenyl chains. Match Commun. Math. Comput. Chem. 2009, 62, 649–656. [Google Scholar]
- Bondy, J.; Murty, U. Graph Theory (Graduate Texts in Mathematics); Springer: New York, NY, USA, 2008; Volume 244. [Google Scholar]
- Chen, A.; Zhang, F. Wiener index and perfect matchings in random phenylene chains. Match Commun. Math. Comput. Chem. 2009, 61, 623–630. [Google Scholar]
- Chung, F.R.K. Spectral Graph Theory CBMS Series; American Mathematical Society: Philadelphia, PA, USA, 1997; Volume 92. [Google Scholar]
- Entringer, R.C.; Jackson, D.E.; Snyder, D. Distance in graphs. Czechoslov. Math. J. 1976, 26, 283–296. [Google Scholar] [CrossRef]
- Buckley, F.; Harary, F. Distance in Graphs. In Structural Analysis of Complex Networks; Addison-Wesley: Redwood City, CA, USA, 1990. [Google Scholar]
- Wei, S.; Shiu, W.C. Enumeration of Wiener indices in random polygonal chains. J. Math. Anal. Appl. 2019, 469, 537–548. [Google Scholar] [CrossRef]
- Estrada, E.; Bonchev, D. Chemical Graph Theory. In Discrete Mathematics and Its Applications Series; Taylor & Francis: London, UK, 2013; No. 83. [Google Scholar]
- Evans, W.C.; Evans, D. Hydrocarbons and derivatives. In Trease and Evans’ Pharmacognosy; Birkhäuser: London, UK, 1996; pp. 173–193. [Google Scholar]
- Zhou, Q.; Wang, L.; Lu, Y. Wiener index and Harary index on Hamilton-connected graphs with large minimum degree. Discret. Appl. Math. 2018, 247, 180–185. [Google Scholar] [CrossRef]
- Flower, D.R. On the properties of bit string-based measures of chemical similarity. J. Chem. Inf. Comput. Sci. 1998, 38, 379–386. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, M.; Madan, A. Eccentric distance sum: A novel graph invariant for predicting biological and physical properties. J. Math. Anal. Appl. 2002, 275, 386–401. [Google Scholar] [CrossRef]
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81–95. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, F. Resistance distance and the normalized Laplacian spectrum. Discret. Appl. Math. 2007, 155, 654–661. [Google Scholar] [CrossRef]
- Cinkir, Z. Deletion and contraction identities for the resistance values and the Kirchhoff index. Int. J. Quantum Chem. 2011, 111, 4030–4041. [Google Scholar] [CrossRef]
- Georgakopoulos, A. Uniqueness of electrical currents in a network of finite total resistance. J. Lond. Math. Soc. 2010, 82, 256–272. [Google Scholar] [CrossRef]
- Gutman, I.; Feng, L.; Yu, G. Degree resistance distance of unicyclic graphs. Trans. Comb. 2012, 1, 27–40. [Google Scholar]
- Somodi, M. On the Ihara zeta function and resistance distance-based indices. Linear Algebra Its Appl. 2016, 513, 201–209. [Google Scholar] [CrossRef]
- Li, S.; Wei, W. Some edge-grafting transformations on the eccentricity resistance-distance sum and their applications. Discret. Appl. Math. 2016, 211, 130–142. [Google Scholar] [CrossRef]
- He, F.; Zhu, Z. Cacti with maximum eccentricity resistance-distance sum. Discret. Appl. Math. 2017, 219, 117–125. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, J.; Bu, C. Some results on Kirchhoff index and degree-Kirchhoff index. Match Commun. Math. Comput. Chem. 2016, 75, 207–222. [Google Scholar]
- Liu, J.-B.; Zhang, T.; Wang, Y.; Lin, W. The Kirchhoff index and spanning trees of Möbius/cylinder octagonal chain. Discret. Appl. Math. 2022, 307, 22–31. [Google Scholar] [CrossRef]
- Huang, G.; Kuang, M.; Deng, H. The expected values of Kirchhoff indices in the random polyphenyl and spiro chains. Ars Math. Contemp. 2014, 9, 197–207. [Google Scholar] [CrossRef]
- Huang, G.; Kuang, M.; Deng, H. The expected values of Hosoya index and Merrifield–Simmons index in a random polyphenylene chain. J. Comb. Optim. 2016, 32, 550–562. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Li, S.; Zhang, M. The expected values for the Schultz index, Gutman index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain. Discret. Appl. Math. 2020, 282, 243–256. [Google Scholar] [CrossRef]
- Qi, J.; Fang, M.; Geng, X. The Expected Value for the Wiener Index in the Random Spiro Chains. Polycycl. Aromat. Compd. 2022, 1–11. [Google Scholar] [CrossRef]
- Heydari, A. On the modified Schultz index of C4C8(S) nanotubes and nanotorus. Digest. J. Nanomater. Biostruct. 2010, 5, 51–56. [Google Scholar]
- Yang, Y.; Klein, D.J. A note on the Kirchhoff and additive degree-Kirchhoff indices of graphs. Z. Naturforsch. A 2015, 70, 459–463. [Google Scholar] [CrossRef]
- Liu, J.B.; Wang, C.; Wang, S.; Wei, B. Zagreb indices and multiplicative zagreb indices of eulerian graphs. Bull. Malays. Math. Sci. Soc. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhao, J.; Min, J.; Cao, J. The Hosoya index of graphs formed by a fractal graph. Fractals 2019, 27, 1950135. [Google Scholar] [CrossRef]
- Person, W.B.; Pimentel, G.C.; Pitzer, K.S. The Structure of Cyclooctatetraene. J. Am. Chem. Soc. 1952, 74, 3437–3438. [Google Scholar] [CrossRef]
- Mukwembi, S.; Munyira, S. Degree distance and minimum degree. Bull. Aust. Math. Soc. 2013, 87, 255–271. [Google Scholar] [CrossRef]
- Tang, M.; Priebe, C.E. Limit theorems for eigenvectors of the normalized Laplacian for random graphs. Ann. Stat. 2018, 46, 2360–2415. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhao, J.; He, H.; Shao, Z. Valency-based topological descriptors and structural property of the generalized sierpiński networks. J. Stat. Phys. 2019, 177, 1131–1147. [Google Scholar] [CrossRef]
- Luthe, G.; Jacobus, J.A.; Robertson, L.W. Receptor interactions by polybrominated diphenyl ethers versus polychlorinated biphenyls: A theoretical structure–activity assessment. Environ. Toxicol. Pharmacol. 2008, 25, 202–210. [Google Scholar] [CrossRef]
- Pavlyuchko, A.; Vasiliev, E.; Gribov, L. Quantum chemical estimation of the overtone contribution to the IR spectra of hydrocarbon halogen derivatives. J. Struct. Chem. 2010, 51, 1045–1051. [Google Scholar] [CrossRef]
- Tepavcevic, S.; Wroble, A.T.; Bissen, M.; Wallace, D.J.; Choi, Y.; Hanley, L. Photoemission studies of polythiophene and polyphenyl films produced via surface polymerization by ion-assisted deposition. J. Phys. Chem. B 2005, 109, 7134–7140. [Google Scholar] [CrossRef] [PubMed]
- Azadifar, S.; Rostami, M.; Berahmand, K.; Moradi, P.; Oussalah, M. Graph-based relevancy-redundancy gene selection method for cancer diagnosis. Comput. Biol. Med. 2022, 147, 105766. [Google Scholar] [CrossRef]
- Nasiri, E.; Berahmand, K.; Rostami, M.; Dabiri, M. A novel link prediction algorithm for protein–protein interaction networks by attributed graph embedding. Comput. Biol. Med. 2021, 137, 104772. [Google Scholar] [CrossRef]
- Rostami, M.; Oussalah, M.; Farrahi, V. A Novel Time-aware Food recommender-system based on Deep Learning and Graph Clustering. IEEE Access 2022, 10, 52508–53524. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, X.; Zhu, W. Enumeration of the Additive Degree–Kirchhoff Index in the Random Polygonal Chains. Axioms 2022, 11, 373. https://doi.org/10.3390/axioms11080373
Geng X, Zhu W. Enumeration of the Additive Degree–Kirchhoff Index in the Random Polygonal Chains. Axioms. 2022; 11(8):373. https://doi.org/10.3390/axioms11080373
Chicago/Turabian StyleGeng, Xianya, and Wanlin Zhu. 2022. "Enumeration of the Additive Degree–Kirchhoff Index in the Random Polygonal Chains" Axioms 11, no. 8: 373. https://doi.org/10.3390/axioms11080373
APA StyleGeng, X., & Zhu, W. (2022). Enumeration of the Additive Degree–Kirchhoff Index in the Random Polygonal Chains. Axioms, 11(8), 373. https://doi.org/10.3390/axioms11080373