A Swarming Approach for the Novel Second Order Perturbed Pantograph Lane–Emden Model Arising in Astrophysics
Abstract
:1. Introduction
- The construction of a mathematical NSPM-SK is presented through the perturbed, pantograph, and singular terms.
- Soft computing schemes using the ANNs along with the hybridization of PSOSQP solver have been applied to present the numerical performances of the nonlinear NSPM-SK.
- The competence of the designed NSPM-SK as well as stochastic computing ANNs along with the hybridization of PSOSQP solver is perceived by using the comparison of the obtained and true solutions.
- Three different cases based on small values of the perturbation terms have been provided to check the capability of the proposed scheme.
- The performances of the scheme to solve the designed NSPM-SK are also observed by using the absolute error (AE) values, which have been proven in good measures.
- The convergence, stability, and reliability of the ANNs-PSOSQP for solving the differential NSPM-SK is observed via statistical procedures based semi-interquartile range (SIR), variance mean square error (MSE), and variance account for (VAF).
- Beside the precise performances of the designed NSPM-SK, smooth processes, ease of understanding, comprehensive applicability, and robustness are other esteemed benefits of the ANNs-PSOSQP solver.
2. Construction of the NSPM-SK
3. ANNs Procedure along with the Optimization of PSOSQP
3.1. ANN Modeling
3.2. Performance Operators
3.3. Networks Optimization
4. Implementations
- The ANNs have been applied for the proposed solutions .
- The Log-sigmoid function is used in the hidden layer and the nth order derivatives have been used provided.
- A merit function is designed based on the differential 2nd order perturbed pantograph Lane–Emden model and its boundary or initial conditions.
- The optimization of the merit function is performed by using the hybrid computing procedure based on the global swarming and local sequential quadratic programming schemes.
- The solutions are performed in terms of unidentified weight vectors.
5. Simulations and Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holevoet, D.; Daele, M.V.; Berghe, G.V. The Optimal Exponentially-Fitted Numerov Method for Solving Two-Point Boundary Value Problems. J. Comp. Appl. Math. 2010, 230, 260–269. [Google Scholar] [CrossRef]
- Phaneendra, K.; Pramod Chakravarthy, P.; Reddy, Y.N. A Fitted Numerov Method for Singular Perturbation Problems Exhibiting Twin Layers. Appl. Math. Inf. Sci. 2010, 4, 341–352. [Google Scholar]
- Patidar, K.C. High order fitted operator numerical method for self-adjoint singular perturbation problems. Appl. Math. Comp. 2005, 171, 547–566. [Google Scholar] [CrossRef]
- Kondo, S.; Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 2010, 329, 1616–1620. [Google Scholar] [CrossRef]
- Bawa, R.K. A Paralel aproach for self-adjoint singular perturbation problems using Numerov’s scheme. Int. J. Comput. Math. 2007, 84, 317–323. [Google Scholar] [CrossRef]
- Amiraliyeva, I.G.; Erdogan, F.; Amiraliyev, G.M. A uniform numerical method for dealing with a singularly perturbed delay inital value problem. Appl. Math. Lett. 2010, 23, 1221–1225. [Google Scholar] [CrossRef]
- Kopteva, N.; Stynes, M. Numerical analysis of a singularly perturbed nonlinear reaction–diffusion problem with multiple solutions. Appl. Numer. Math. 2002, 51, 273–288. [Google Scholar] [CrossRef]
- Doolan, E.R.; Miller, J.J.H.; Schilders, W.H.A. Uniform Numerical Methods for Problems with Initial and Boundary Layers; Boole Press: Dublin, Ireland, 1980. [Google Scholar]
- Roos, H.G.; Stynes, M.; Tobiska, L. Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Farrell, P.A.; Hegarty, A.F.; Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I. Robust Computational Techniques for Boundary Layers; Chapman-Hall: New York, NY, USA; CRC Press: New York, NY, USA, 2000. [Google Scholar]
- Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I. Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions; World Scientific: Singapore, 2012. [Google Scholar]
- Linss, T. Layer-adapted meshes for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 2003, 192, 1061–1105. [Google Scholar] [CrossRef]
- Erdogan, F.; Sakar, M.G.; Saldır, O. A finite difference method on layer-adapted mesh for singularly perturbed delay differential equations. Appl. Math. Nonlinear Sci. 2020, 5, 425–436. [Google Scholar] [CrossRef]
- Linss, T.; Stynes, M. A hybrid difference scheme on a Shishkin mesh for linear convection-diffusion problems. Appl. Numer. Math. 1999, 31, 255–270. [Google Scholar] [CrossRef]
- Bogachev, L.; Derfel, G.; Molchanov, S.; Ochendon, J. On bounded solutions of the balanced generalized pantograph equation. In Topics in Stochastic Analysis and Nonparametric Estimation; The IMA Volumes in Mathematics and Its Applications; Chow, P.L., George, Y., Mordukhovich, B., Eds.; Springer: New York, NY, USA, 2008; Volume 145, pp. 29–49. [Google Scholar]
- Vanani, S.K.; Hafshejani, J.S.; Soleymani, F.; Khan, M. On the numerical solution of generalized pantograph equation. World Appl. Sci. J. 2011, 13, 2531–2535. [Google Scholar]
- Ockendon, J.R.; Tayler, A.B. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1971, 322, 447–468. [Google Scholar]
- Anakira, N.R.; Jameel, A.; Alomari, A.K.; Saaban, A.; Almahameed, M.; Hashim, I. Approximate solutions of multi-pantograph type delay differential equations using multistage optimal homotopy asymptotic method. J. Math. Fundam. Sci. 2018, 50, 221–232. [Google Scholar] [CrossRef]
- Yousefi, S.A.; Noei-Khorshidi, M.; Lotfi, A. Convergence analysis of least squares-Epsilon-Ritz algorithm for solving a general class of pantograph equations. Kragujev. J. Math. 2018, 42, 431–439. [Google Scholar] [CrossRef]
- Ezz-Eldien, S.S.; Wang, Y.; Abdelkawy, M.A.; Zaky, M.A.; Aldraiweesh, A.A.; Machado, J.T. Chebyshev spectral methods for multi-order fractional neutral pantograph equations. Nonlinear Dyn. 2020, 100, 3785–3797. [Google Scholar] [CrossRef]
- Yüzbaşi, S.; Ismailov, N. A Taylor operation method for solutions of generalized pantograph type delay differential equations. Turk. J. Math. 2018, 42, 395–406. [Google Scholar] [CrossRef]
- Ezz-Eldien, S.S. On solving systems of multi-pantograph equations via spectral tau method. Appl. Math. Comput. 2018, 321, 63–73. [Google Scholar] [CrossRef]
- Isah, A.; Phang, C. A collocation method based on Genocchi operational matrix for solving Emden-Fowler equations. J. Phys. Conf. Ser. 2020, 1489, 012022. [Google Scholar] [CrossRef]
- Gul, H.; Alrabaiah, H.; Ali, S.; Shah, K.; Muhammad, S. Computation of solution to fractional order partial reaction diffusion equations. J. Adv. Res. 2020, 25, 31–38. [Google Scholar] [CrossRef]
- Amin, R.; Shah, K.; Asif, M.; Khan, I.; Ullah, F. An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. J. Comput. Appl. Math. 2021, 381, 113028. [Google Scholar] [CrossRef]
- Sabir, Z.; Sakar, M.G.; Yeskindirova, M.; Saldir, O. Numerical investigations to design a novel model based on the fifth order system of Emden–Fowler equations. Theor. Appl. Mech. Lett. 2020, 10, 333–342. [Google Scholar] [CrossRef]
- Abdelkawy, M.A.; Sabir, Z.; Guirao, J.L.G.; Saeed, T. Numerical investigations of a new singular second-order nonlinear coupled functional Lane–Emden model. Open Phys. 2020, 18, 770–778. [Google Scholar] [CrossRef]
- Arqub, O.A.; Osman, M.S.; Abdel-Aty, A.H.; Mohamed, A.B.A.; Momani, S. A numerical algorithm for the solutions of ABC singular Lane–Emden type models arising in astrophysics using reproducing kernel discretization method. Mathematics 2020, 8, 923. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Youssri, Y.; Doha, E.H. New solutions for singular Lane-Emden equations arising in astrophysics based on shifted ultraspherical operational matrices of derivatives. Comput. Methods Differ. Equ. 2014, 2, 171–185. [Google Scholar]
- Atangana, A.; Aguilar, J.F.G.; Kolade, M.O.; Hristov, J.Y. Fractional differential and integral operators with non-singular and non-local kernel with application to nonlinear dynamical systems. Chaos Solitons Fractals 2020, 132, 109493. [Google Scholar] [CrossRef]
- Adel, W. A Numerical Technique for Solving a Class of Fourth-Order Singular Singularly Perturbed and Emden–Fowler Problems Arising in Astrophysics. Int. J. Appl. Comput. Math. 2022, 8, 220. [Google Scholar] [CrossRef]
- Mall, S.; Chakraverty, S. A novel Chebyshev neural network approach for solving singular arbitrary order Lane-Emden equation arising in astrophysics. Netw. Comput. Neural Syst. 2020, 31, 142–165. [Google Scholar] [CrossRef] [PubMed]
- Rufai, M.A.; Ramos, H. Numerical solution of second-order singular problems arising in astrophysics by combining a pair of one-step hybrid block Nyström methods. Astrophys. Space Sci. 2020, 365, 96. [Google Scholar] [CrossRef]
- Balaji, S. A new Bernoulli wavelet operational matrix of derivative method for the solution of nonlinear singular Lane–Emden type equations arising in astrophysics. J. Comput. Nonlinear Dyn. 2016, 11, 051013. [Google Scholar] [CrossRef]
- Kaur, H.; Mittal, R.C.; Mishra, V. Haar wavelet approximate solutions for the generalized Lane–Emden equations arising in astrophysics. Comput. Phys. Commun. 2013, 184, 2169–2177. [Google Scholar] [CrossRef]
- Singh, R. Analytic solution of system of singular nonlinear differential equations with Neumann-Robin boundary conditions arising in astrophysics. arXiv 2020, arXiv:2007.01653. [Google Scholar]
- Wazwaz, A.M. Analytical solution for the time-dependent Emden–Fowler type of equations by Adomian decomposition method. Appl. Math. Comput. 2005, 166, 638–651. [Google Scholar] [CrossRef]
- Ali, M.R.; Hadhoud, A.R.; Ma, W.X. Evolutionary numerical approach for solving nonlinear singular periodic boundary value problems. J. Intell. Fuzzy Syst. 2020, 39, 7723–7731. [Google Scholar] [CrossRef]
- Adel, W.; Sabir, Z. Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli collocation method. Eur. Phys. J. Plus 2020, 135, 427. [Google Scholar] [CrossRef]
- Guerrero Sánchez, Y.; Sabir, Z.; Günerhan, H.; Baskonus, H.M. Analytical and approximate solutions of a novel nervous stomach mathematical model. Discret. Dyn. Nat. Soc. 2020, 2020, 5063271. [Google Scholar] [CrossRef]
- Sabir, Z.; Saed, T.; Alhodaly, M.S.; Alsulami, H.H.; Sánchez, Y.G. An advanced heuristic approach for a nonlinear mathematical based medical smoking model. Results Phys. 2021, 32, 105137. [Google Scholar]
- Sabir, Z.; Ali, M.R.; Sadat, R. Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model. J. Ambient Intell. Humaniz. Comput. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Sabir, Z. Stochastic numerical investigations for nonlinear three-species food chain system. Int. J. Biomath. 2021, 15, 2250005. [Google Scholar] [CrossRef]
- Sabir, Z. Neuron analysis through the swarming procedures for the singular two-point boundary value problems arising in the theory of thermal explosion. Eur. Phys. J. Plus 2022, 137, 638. [Google Scholar] [CrossRef]
- Sabir, Z.; Wahab, H.A.; Ali, M.R.; Sadat, R. Neuron analysis of the two-point singular boundary value problems arising in the thermal explosion’s theory. Neural Process. Lett. 2022, 1–28. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Nguyen, T.G.; Fathurrochman, I.; Sadat, R.; Ali, M.R. Applications of neural networks for the novel designed of nonlinear fractional seventh order singular system. Eur. Phys. J. Spec. Top. 2022, 231, 1831–1845. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1945–1950. [Google Scholar]
- Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- Zhang, X.; Liu, H.; Tu, L. A modified particle swarm optimization for multimodal multi-objective optimization. Eng. Appl. Artif. Intell. 2020, 95, 103905. [Google Scholar] [CrossRef]
- De Almeida, B.S.G.; Leite, V.C. Particle swarm optimization: A powerful technique for solving engineering problems. In Swarm Intelligence-Recent Advances, New Perspectives and Applications; Books on Demand: McFarland, WI, USA, 2019; pp. 31–51. [Google Scholar]
- Elsheikh, A.H.; Abd Elaziz, M. Review on applications of particle swarm optimization in solar energy systems. Int. J. Environ. Sci. Technol. 2019, 16, 1159–1170. [Google Scholar] [CrossRef]
- Darwish, A.; Ezzat, D.; Hassanien, A.E. An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis. Swarm Evol. Comput. 2020, 52, 100616. [Google Scholar] [CrossRef]
- Yousri, D.; Thanikanti, S.B.; Allam, D.; Ramachandaramurthy, V.K.; Eteiba, M.B. Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters. Energy 2020, 195, 116979. [Google Scholar] [CrossRef]
- Junior, F.E.F.; Yen, G.G. Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol. Comput. 2019, 49, 62–74. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, J.; Wu, D.; Cai, X.; Wang, H.; Zhang, W.; Chen, J. Hybrid many-objective particle swarm optimization algorithm for green coal production problem. Inf. Sci. 2020, 518, 256–271. [Google Scholar] [CrossRef]
- Chen, H.; Fan, D.L.; Fang, L.; Huang, W.; Huang, J.; Cao, C.; Yang, L.; He, Y.; Zeng, L. Particle swarm optimization algorithm with mutation operator for particle filter noise reduction in mechanical fault diagnosis. Int. J. Pattern Recognit. Artif. Intell. 2020, 34, 2058012. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, G.; Guo, L. Sequential quadratic programming method for nonlinear least squares estimation and its application. Math. Probl. Eng. 2019, 2019, 3087949. [Google Scholar]
- Olson, R.T.; Liebman, J.S. Optimization of a chilled water plant using sequential quadratic programming. Eng. Optim. 1990, 15, 171–191. [Google Scholar] [CrossRef]
- Fesanghary, M.; Mahdavi, M.; Minary-Jolandan, M.; Alizadeh, Y. Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput. Methods Appl. Mech. Eng. 2008, 197, 3080–3091. [Google Scholar] [CrossRef]
- Curtis, F.E.; Overton, M.L. A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization. SIAM J. Optim. 2012, 22, 474–500. [Google Scholar] [CrossRef]
- Basu, M. Hybridization of bee colony optimization and sequential quadratic programming for dynamic economic dispatch. Int. J. Electr. Power Energy Syst. 2013, 44, 591–596. [Google Scholar] [CrossRef]
- ElSayed, S.K.; Elattar, E.E. Hybrid Harris hawks optimization with sequential quadratic programming for optimal coordination of directional overcurrent relays incorporating distributed generation. Alex. Eng. J. 2021, 60, 2421–2433. [Google Scholar] [CrossRef]
- Bedair, O.K. Analysis of stiffened plates under lateral loading using sequential quadratic programming (SQP). Comput. Struct. 1997, 62, 63–80. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L.F. Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches. Int. J. Electr. Power Energy Syst. 2020, 115, 105442. [Google Scholar] [CrossRef]
- Finardi, E.C.; da Silva, E.L. Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming. IEEE Trans. Power Syst. 2006, 21, 835–844. [Google Scholar] [CrossRef]
- Aghilí, A. Complete solution for the time fractional diffusion problem with mixed boundary conditions by operational method. Appl. Math. Nonlinear Sci. 2021, 6, 9–20. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. On the exact solutions to some system of complex nonlinear models. Appl. Math. Nonlinear Sci. 2021, 6, 29–42. [Google Scholar] [CrossRef]
- Gençoglu, M.T.; Agarwal, P. Use of quantum differential equations in sonic processes. Appl. Math. Nonlinear Sci. 2021, 6, 21–28. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Bulut, H.; Sulaiman, T.A. New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method. Appl. Math. Nonlinear Sci. 2019, 4, 141–150. [Google Scholar] [CrossRef]
- Che, Y.; Keir, M.Y.A. Study on the training model of football movement trajectory drop point based on fractional differential equation. Appl. Math. Nonlinear Sci. 2021, 7, 425–430. [Google Scholar] [CrossRef]
- Touchent, K.A.; Hammouch, Z.; Mekkaoui, T. A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Appl. Math. Nonlinear Sci. 2020, 5, 35–48. [Google Scholar] [CrossRef]
- İlhan, E.; Kıymaz, İ.O. A generalization of truncated M-fractional derivative and applications to fractional differential equations. Appl. Math. Nonlinear Sci. 2020, 5, 171–188. [Google Scholar] [CrossRef]
- Sajjan, K.; Shah, N.A.; Ahammad, N.A.; Raju, C.S.K.; Kumar, M.D.; Weera, W. Nonlinear Boussinesq and Rosseland approximations on 3D flow in an interruption of Ternary nanoparticles with various shapes of densities and conductivity properties. AIMS Math. 2022, 7, 18416–18449. [Google Scholar] [CrossRef]
- Priyadharshini, P.; Archana, M.V.; Ahmmad, N.A.; Raju, C.S.K.; Yook, S.-J.; Shah, N.A. Gradient descent machine learning regression for MHD flow: Metallurgy process. Int. Commun. Heat Mass Transf. 2022, 138, 106307. [Google Scholar] [CrossRef]
- Durur, H.; Tasbozan, O.; Kurt, A. New analytical solutions of conformable time fractional bad and good modified Boussinesq equations. Appl. Math. Nonlinear Sci. 2020, 5, 447–454. [Google Scholar] [CrossRef]
m | Minimum | Mean | Median | SIR | STD |
---|---|---|---|---|---|
0 | 4.3904 × 10−8 | 3.6265 × 10−4 | 1.0400 × 10−6 | 7.6454 × 10−5 | 1.0311 × 10−3 |
0.05 | 1.4554 × 10−6 | 3.3942 × 10−4 | 2.3275 × 10−5 | 4.8341 × 10−5 | 9.2455 × 10−4 |
0.1 | 4.4638 × 10−6 | 3.4196 × 10−4 | 4.8003 × 10−5 | 4.2951 × 10−5 | 7.8587 × 10−4 |
0.15 | 1.7452 × 10−6 | 3.8503 × 10−4 | 5.8681 × 10−5 | 9.4405 × 10−5 | 7.6120 × 10−4 |
0.2 | 4.5143 × 10−6 | 4.9945 × 10−4 | 5.1692 × 10−5 | 1.1602 × 10−4 | 1.0961 × 10−3 |
0.25 | 1.4092 × 10−6 | 3.8572 × 10−4 | 4.2895 × 10−5 | 9.9564 × 10−5 | 1.1912 × 10−3 |
0.3 | 9.7629 × 10−8 | 8.8601 × 10−4 | 4.2982 × 10−5 | 1.0455 × 10−4 | 2.8706 × 10−3 |
0.35 | 1.7482 × 10−7 | 1.5667 × 10−3 | 5.1096 × 10−5 | 1.0517 × 10−4 | 5.5859 × 10−3 |
0.4 | 2.2611 × 10−6 | 3.9726 × 10−3 | 4.8634 × 10−5 | 1.8399 × 10−4 | 1.1314 × 10−2 |
0.45 | 8.7377 × 10−7 | 1.3675 × 10−2 | 3.1546 × 10−5 | 1.5173 × 10−4 | 5.0061 × 10−2 |
0.5 | 4.0094 × 10−6 | 2.7514 × 10−2 | 4.8094 × 10−5 | 1.0866 × 10−4 | 1.2399 × 10−1 |
0.55 | 1.9049 × 10−6 | 5.1659 × 10−2 | 7.7571 × 10−5 | 2.5063 × 10−4 | 2.3234 × 10−1 |
0.6 | 6.8030 × 10−6 | 8.9202 × 10−2 | 1.2018 × 10−4 | 3.4817 × 10−4 | 3.7337 × 10−1 |
0.65 | 2.3541 × 10−7 | 1.4304 × 10−1 | 1.5072 × 10−4 | 8.4833 × 10−4 | 5.3958 × 10−1 |
0.7 | 2.0848 × 10−6 | 2.0497 × 10−1 | 1.9105 × 10−4 | 7.5031 × 10−4 | 7.2021 × 10−1 |
0.75 | 2.9902 × 10−5 | 2.6991 × 10−1 | 2.4564 × 10−4 | 3.9211 × 10−4 | 9.0182 × 10−1 |
0.8 | 6.1993 × 10−5 | 3.3323 × 10−1 | 3.3385 × 10−4 | 8.6441 × 10−4 | 1.0745 × 10−2 |
0.85 | 4.6967 × 10−5 | 3.9190 × 10−1 | 4.8744 × 10−4 | 1.0360 × 10−3 | 1.2359 × 10−2 |
0.9 | 1.1821 × 10−5 | 4.4771 × 10−1 | 5.4054 × 10−4 | 2.3516 × 10−3 | 1.3890 × 10−2 |
0.95 | 2.6420 × 10−5 | 5.0376 × 10−1 | 4.4838 × 10−4 | 1.3523 × 10−3 | 1.5371 × 10−1 |
1 | 7.3636 × 10−6 | 5.5496 × 10−1 | 4.5284 × 10−4 | 2.9659 × 10−3 | 1.6775 × 10−1 |
m | Minimum | Mean | Median | SIR | STD |
---|---|---|---|---|---|
0 | 1.1649 × 10−7 | 1.3470 × 10−4 | 1.5046 × 10−5 | 4.0492 × 10−5 | 3.1253 × 10−4 |
0.05 | 1.8137 × 10−6 | 1.5931 × 10−3 | 9.5356 × 10−5 | 2.2596 × 10−4 | 3.8118 × 10−3 |
0.1 | 6.3340 × 10−6 | 4.2077 × 10−3 | 2.6698 × 10−4 | 4.0484 × 10−4 | 1.1816 × 10−2 |
0.15 | 1.7263 × 10−5 | 6.0877 × 10−3 | 4.1286 × 10−4 | 6.7397 × 10−4 | 1.9796 × 10−2 |
0.2 | 1.6436 × 10−5 | 7.0351 × 10−3 | 3.9400 × 10−4 | 8.6018 × 10−4 | 2.0915 × 10−2 |
0.25 | 6.3275 × 10−6 | 6.5486 × 10−3 | 3.9677 × 10−4 | 9.1556 × 10−4 | 1.4767 × 10−2 |
0.3 | 1.2951 × 10−6 | 1.8621 × 10−2 | 3.0253 × 10−4 | 8.2729 × 10−4 | 3.9081 × 10−2 |
0.35 | 2.1205 × 10−6 | 1.6468 × 10−2 | 1.7691 × 10−4 | 6.2989 × 10−4 | 4.1966 × 10−2 |
0.4 | 1.6203 × 10−5 | 5.1758 × 10−2 | 1.7282 × 10−4 | 3.8490 × 10−4 | 1.2779 × 10−2 |
0.45 | 4.4780 × 10−6 | 1.1006 × 10−1 | 9.4618 × 10−5 | 1.8315 × 10−4 | 2.8844 × 10−1 |
0.5 | 2.9411 × 10−6 | 1.6958 × 10−1 | 7.0218 × 10−5 | 1.4970 × 10−4 | 4.6485 × 10−2 |
0.55 | 6.7978 × 10−6 | 2.3410 × 10−1 | 8.5929 × 10−5 | 1.8040 × 10−4 | 6.4119 × 10−2 |
0.6 | 1.0129 × 10−6 | 3.2900 × 10−1 | 9.1335 × 10−5 | 3.4119 × 10−4 | 8.0229 × 10−2 |
0.65 | 2.0124 × 10−5 | 4.2501 × 10−1 | 1.4518 × 10−4 | 3.0738 × 10−4 | 9.4935 × 10−2 |
0.7 | 2.6357 × 10−6 | 5.0824 × 10−1 | 2.0109 × 10−4 | 2.9000 × 10−4 | 1.0807 × 10−2 |
0.75 | 4.9860 × 10−6 | 5.7696 × 10−1 | 1.7658 × 10−4 | 3.8152 × 10−4 | 1.1950 × 10−2 |
0.8 | 3.5806 × 10−6 | 6.3367 × 10−1 | 2.4578 × 10−4 | 3.5953 × 10−4 | 1.2961 × 10−2 |
0.85 | 1.3259 × 10−5 | 6.8452 × 10−1 | 2.7244 × 10−4 | 3.6889 × 10−4 | 1.3938 × 10−2 |
0.9 | 1.3462 × 10−5 | 7.3631 × 10−1 | 1.0146 × 10−4 | 2.7397 × 10−4 | 1.4984 × 10−2 |
0.95 | 1.9113 × 10−6 | 7.9275 × 10−1 | 9.2564 × 10−5 | 3.3846 × 10−4 | 1.6135 × 10−2 |
1 | 3.0452 × 10−6 | 8.5448 × 10−1 | 5.9990 × 10−5 | 1.9548 × 10−4 | 1.7396 × 10−2 |
m | Minimum | Mean | Median | SIR | STD |
---|---|---|---|---|---|
0 | 4.2085 × 10−7 | 1.3337 × 10−3 | 4.0009 × 10−5 | 9.6972 × 10−5 | 4.5390 × 10−3 |
0.05 | 1.3292 × 10−6 | 9.1821 × 10−3 | 9.1426 × 10−5 | 6.9032 × 10−4 | 2.4882 × 10−2 |
0.1 | 1.4735 × 10−5 | 1.5129 × 10−2 | 2.5867 × 10−4 | 1.0013 × 10−3 | 4.6832 × 10−2 |
0.15 | 8.3002 × 10−6 | 3.8752 × 10−2 | 5.3338 × 10−4 | 1.6333 × 10−3 | 9.8512 × 10−2 |
0.2 | 2.5565 × 10−5 | 1.1682 × 10−1 | 6.6734 × 10−4 | 1.9833 × 10−3 | 3.3632 × 10−2 |
0.25 | 2.3961 × 10−7 | 2.3151 × 10−1 | 6.8608 × 10−4 | 2.5227 × 10−3 | 6.4476 × 10−2 |
0.3 | 1.7515 × 10−6 | 3.4997 × 10−1 | 5.9622 × 10−4 | 3.3119 × 10−3 | 8.2912 × 10−2 |
0.35 | 1.4662 × 10−5 | 4.2640 × 10−1 | 4.2821 × 10−4 | 3.8128 × 10−3 | 9.1164 × 10−2 |
0.4 | 2.3280 × 10−6 | 4.5987 × 10−1 | 2.2560 × 10−4 | 7.4007 × 10−4 | 9.4459 × 10−2 |
0.45 | 4.9002 × 10−7 | 4.6296 × 10−1 | 8.3639 × 10−5 | 3.5459 × 10−3 | .4478 × 10−2 |
0.5 | 2.4213 × 10−6 | 4.4791 × 10−1 | 7.6970 × 10−5 | 2.7230 × 10−3 | 9.2015 × 10−2 |
0.55 | 2.5488 × 10−6 | 4.2521 × 10−1 | 1.4429 × 10−4 | 1.5583 × 10−3 | 8.8754 × 10−2 |
0.6 | 4.8525 × 10−6 | 4.0542 × 10−1 | 1.2728 × 10−4 | 4.2997 × 10−4 | 8.6936 × 10−2 |
0.65 | 6.5669 × 10−6 | 3.9832 × 10−1 | 8.4886 × 10−5 | 8.1396 × 10−4 | 8.7643 × 10−2 |
0.7 | 4.1353 × 10−6 | 4.0615 × 10−1 | 6.1679 × 10−5 | 1.3718 × 10−3 | 9.0815 × 10−2 |
0.75 | 1.7299 × 10−6 | 4.2934 × 10−1 | 1.1431 × 10−4 | 1.1024 × 10−3 | 9.6206 × 10−2 |
0.8 | 3.1040 × 10−6 | 4.6114 × 10−1 | 1.1269 × 10−4 | 4.3519 × 10−4 | 1.0365 × 10−2 |
0.85 | 6.8097 × 10−6 | 5.0185 × 10−1 | 1.1281 × 10−4 | 1.0802 × 10−3 | 1.1274 × 10−2 |
0.9 | 2.1479 × 10−6 | 5.4856 × 10−1 | 3.7370 × 10−5 | 1.1706 × 10−3 | 1.2369 × 10−2 |
0.95 | 1.0856 × 10−6 | 6.0404 × 10−1 | 1.0748 × 10−4 | 4.7294 × 10−4 | 1.3661 × 10−2 |
1 | 1.2122 × 10−6 | 8.0065 × 10−1 | 3.6718 × 10−5 | 3.4077 × 10−4 | 1.6204 × 10−2 |
Index | Case | G. Fitness | G. EVAF | G.MSE | |||
---|---|---|---|---|---|---|---|
Minimum | SIR | Minimum | SIR | Minimum | SIR | ||
1 | 6.6653 × 10−6 | 1.0366 × 10−7 | 1.4478 × 10−1 | 1.0854 × 10−3 | 2.2604 × 10−5 | 1.4731 × 10−7 | |
2 | 1.7466 × 10−4 | 5.2211 × 10−7 | 2.9367 × 10−2 | 3.1403 × 10−4 | 4.0826 × 10−4 | 4.1898 × 10−8 | |
3 | 1.8390 × 10−4 | 9.8167 × 10−8 | 3.5907 × 10−2 | 1.5192 × 10−3 | 3.9693 × 10−5 | 9.2667 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Nuwairan, M.; Sabir, Z. A Swarming Approach for the Novel Second Order Perturbed Pantograph Lane–Emden Model Arising in Astrophysics. Axioms 2022, 11, 449. https://doi.org/10.3390/axioms11090449
Al Nuwairan M, Sabir Z. A Swarming Approach for the Novel Second Order Perturbed Pantograph Lane–Emden Model Arising in Astrophysics. Axioms. 2022; 11(9):449. https://doi.org/10.3390/axioms11090449
Chicago/Turabian StyleAl Nuwairan, Muneerah, and Zulqurnain Sabir. 2022. "A Swarming Approach for the Novel Second Order Perturbed Pantograph Lane–Emden Model Arising in Astrophysics" Axioms 11, no. 9: 449. https://doi.org/10.3390/axioms11090449
APA StyleAl Nuwairan, M., & Sabir, Z. (2022). A Swarming Approach for the Novel Second Order Perturbed Pantograph Lane–Emden Model Arising in Astrophysics. Axioms, 11(9), 449. https://doi.org/10.3390/axioms11090449