Degenerate Fubini-Type Polynomials and Numbers, Degenerate Apostol–Bernoulli Polynomials and Numbers, and Degenerate Apostol–Euler Polynomials and Numbers
Abstract
:1. Motivations
2. Necessary Lemmamas
3. Explicit and Closed-Form Formulas and Recurrence Relations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nörlund, N.E. Vorlesungen über Differenzenrechnung; Springer: Berlin, Germany, 1924. [Google Scholar]
- Luo, Q.-M. On the Apostol–Bernoulli polynomials. Cent. Eur. J. Math. 2004, 2, 509–515. [Google Scholar] [CrossRef]
- Luo, Q.-M.; Srivastava, H.M. Some generalizations of the Apostol–Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 2005, 308, 290–302. [Google Scholar] [CrossRef]
- Luo, Q.-M.; Srivastava, H.M. Some relationships between the Apostol–Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2006, 51, 631–642. [Google Scholar] [CrossRef]
- Luo, Q.-M. Apostol–Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 2006, 10, 917–925. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. Generalization of Bernoulli polynomials. Int. J. Math. Educ. Sci. Technol. 2002, 33, 428–431. [Google Scholar] [CrossRef]
- Carlitz, L. Degenerate Stirling Bernoulli and Eulerian numbers. Utilitas Math. 1979, 15, 51–88. [Google Scholar]
- Khan, S.; Nahid, T.; Riyasat, M. On degenerate Apostol-type polynomials and applications. Bol. Soc. Mat. Mex. 2019, 25, 509–528. [Google Scholar] [CrossRef]
- Dere, R.; Simsek, Y.; Srivastava, H.M. A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra. J. Number Theory 2013, 133, 3245–3263. [Google Scholar] [CrossRef]
- Ðorđević, G.B.; Milovanović, G.V. Special Classes of Polynomials; University of Niš, Faculty of Technology: Leskovac, Serbia, 2014. [Google Scholar]
- He, Y.; Araci, S.; Srivastava, H.M. Some new formulas for the products of the Apostol type polynomials. Adv. Differ. Equ. 2016, 2016, 287. [Google Scholar] [CrossRef]
- He, Y.; Araci, S.; Srivastava, H.M.; Acikgöz, M. Some new identities for the Apostol–Bernoulli polynomials and the Apostol–Genocchi polynomials. Appl. Math. Comput. 2015, 262, 31–41. [Google Scholar] [CrossRef]
- Lu, D.-Q.; Srivastava, H.M. Some series identities involving the generalized Apostol type and related polynomials. Comput. Math. Appl. 2011, 62, 3591–3602. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, G.; Simsek, Y.; Milovanović, G.V. Generating functions for special polynomials and numbers including Apostol-type and Humbert-type polynomials. Mediterr. J. Math. 2017, 14, 117. [Google Scholar] [CrossRef]
- Kılar, N.; Simsek, Y. A new family of Fubini type numbers and polynomials associated with Apostol–Bernoulli numbers and polynomials. J. Korean Math. Soc. 2017, 54, 1605–1621. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kızılateş, C. A parametric kind of the Fubini-type polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 3253–3267. [Google Scholar] [CrossRef]
- Kargın, L. Some formulae for products of geometric polynomials with applications. J. Integer Seq. 2017, 20, 4. [Google Scholar]
- Kılar, N.; Simsek, Y. Identities and relations for Fubini type numbers and polynomials via generating functions and p-adic integral approach. Publ. Inst. Math. 2019, 106, 113–123. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Kwon, H.-I.; Park, J.-W. Two variable higher-order Fubini polynomials. J. Korean Math. Soc. 2018, 55, 975–986. [Google Scholar] [CrossRef]
- Sharma, S.K.; Khan, W.A.; Ryoo, C.S. A parametric kind of the degenerate Fubini numbers and polynomials. Mathematics 2020, 8, 405. [Google Scholar] [CrossRef]
- Su, D.-D.; He, Y. Some identities for the two variable Fubini polynomials. Mathematics 2019, 7, 115. [Google Scholar] [CrossRef]
- Dağlı, M.C. A new recursive formula arising from a determinantal expression for weighted Delannoy numbers. Turkish J. Math. 2021, 45, 471–478. [Google Scholar] [CrossRef]
- Dağlı, M.C. Closed formulas and determinantal expressions for higher-order Bernoulli and Euler polynomials in terms of Stirling numbers. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2021, 115, 32. [Google Scholar] [CrossRef]
- Dağlı, M.C. Explicit, determinantal, recursive formulas and relations of the Peters polynomials and numbers. Math. Methods Appl. Sci. 2022, 45, 2582–2591. [Google Scholar] [CrossRef]
- Dai, L.; Pan, H. Closed forms for degenerate Bernoulli polynomials. Bull. Aust. Math. Soc. 2020, 101, 207–217. [Google Scholar] [CrossRef]
- Hong, Y.; Guo, B.-N.; Qi, F. Determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind. CMES Comput. Model. Eng. Sci. 2021, 129, 409–423. [Google Scholar] [CrossRef]
- Hu, S.; Kim, M.-S. Two closed forms for the Apostol–Bernoulli polynomials. Ramanujan J. 2018, 46, 103–117. [Google Scholar] [CrossRef]
- Jin, S.; Guo, B.-N.; Qi, F. Partial Bell polynomials, falling and rising factorials, Stirling numbers, and combinatorial identities. CMES Comput. Model. Eng. Sci. 2022, 132, 781–799. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials. Mediterr. J. Math. 2017, 14, 140. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Some determinantal expressions and recurrence relations of the Bernoulli polynomials. Mathematics 2016, 4, 65. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D.; Guo, B.-N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 1–9. [Google Scholar] [CrossRef]
- Qi, F.; Niu, D.-W.; Guo, B.-N. Some identities for a sequence of unnamed polynomials connected with the Bell polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2019, 113, 557–567. [Google Scholar] [CrossRef]
- Wang, Y.; Dağlı, M.C.; Liu, X.-M.; Qi, F. Explicit, determinantal, and recurrent formulas of generalized Eulerian polynomials. Axioms 2021, 10, 37. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions; Revised and Enlarged Edition; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1974. [Google Scholar] [CrossRef]
- Guo, B.-N.; Lim, D.; Qi, F. Maclaurin’s series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function. Appl. Anal. Discrete Math. 2022, 17. in press. [Google Scholar] [CrossRef]
- Qi, F.; Dağlı, M.C.; Lim, D. Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers. Open Math. 2021, 19, 833–849. [Google Scholar] [CrossRef]
- Wu, L.; Chen, X.-Y.; Dağlı, M.C.; Qi, F. On degenerate array type polynomials. CMES Comput. Model. Eng. Sci. 2022, 131, 295–305. [Google Scholar] [CrossRef]
- Dağlı, M.C. Degenerate Fubini-type polynomials associated with degenerate Apostol–Bernoulli and Apostol-Euler polynomials of order α. arXiv 2021, arXiv:arXiv:2104.08833. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Dağli, M.C.; Qi, F. Degenerate Fubini-Type Polynomials and Numbers, Degenerate Apostol–Bernoulli Polynomials and Numbers, and Degenerate Apostol–Euler Polynomials and Numbers. Axioms 2022, 11, 477. https://doi.org/10.3390/axioms11090477
Jin S, Dağli MC, Qi F. Degenerate Fubini-Type Polynomials and Numbers, Degenerate Apostol–Bernoulli Polynomials and Numbers, and Degenerate Apostol–Euler Polynomials and Numbers. Axioms. 2022; 11(9):477. https://doi.org/10.3390/axioms11090477
Chicago/Turabian StyleJin, Siqintuya, Muhammet Cihat Dağli, and Feng Qi. 2022. "Degenerate Fubini-Type Polynomials and Numbers, Degenerate Apostol–Bernoulli Polynomials and Numbers, and Degenerate Apostol–Euler Polynomials and Numbers" Axioms 11, no. 9: 477. https://doi.org/10.3390/axioms11090477
APA StyleJin, S., Dağli, M. C., & Qi, F. (2022). Degenerate Fubini-Type Polynomials and Numbers, Degenerate Apostol–Bernoulli Polynomials and Numbers, and Degenerate Apostol–Euler Polynomials and Numbers. Axioms, 11(9), 477. https://doi.org/10.3390/axioms11090477