The Existence, Uniqueness, and Multiplicity of Solutions for Two Fractional Nonlocal Equations
Abstract
:1. Work Spaces and Preliminaries
1.1. The First Definition of the Fractional Hilbert Space and Fractional Laplacian Operator
1.2. The Second Definition of the Fractional Hilbert Space and Fractional Laplacian Operator
2. Main Results and Background
3. Proof of Main Results
3.1. Proof of Theorem 1
3.2. Proof of Theorem 2
3.3. Proof of Theorem 3
3.4. Proof of Theorem 4
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nezza, E.D.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Aronszajn, N. Boundary values of functions with finite Dirichlet integral. Technol. Rep. Univ. Kans. 1955, 14, 77–94. [Google Scholar]
- Gagliardo, E. Proprietà di alcune classi di funzioni in più variabili. Ricerche. Mat. 1958, 7, 102–137. [Google Scholar]
- Slobodeckij, L.N. Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations. Leningrad. Gos. Ped. Inst. Učep. Zap. 1958, 197, 54–112. [Google Scholar] [CrossRef]
- Yang, J.F.; Yu, X.H. Fractional Hardy-Sobolev elliptic problems. Topol. Methods Nonlinear Anal. 2020, 55, 257–280. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinburgh. Sect. A Math. 2014, 144, 831–855. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.H.; Yang, J.; Zhou, J. Solutions for a nonlocal problem involving a Hardy potential and critical growth. J. D’Analyse Math. 2021, 144, 261–303. [Google Scholar] [CrossRef]
- Demengel, F.; Demengel, G. Functional Spaces for the Theory of Elliptic Partial Differential Equations; Springer: London, UK, 2012. [Google Scholar]
- Fiscella, A.; Mishra, P.K. Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities. Manuscripta Math. 2022, 168, 257–301. [Google Scholar] [CrossRef]
- Fall, M.M. Semilinear elliptic equations for the fractional Laplacian with Hardy potential. Nonlinear Anal. 2020, 193, 111311. [Google Scholar] [CrossRef] [Green Version]
- Landkof, N.S. Foundations of Modern Potential Theory; Springer: Berlin/Heidelberg, Germany, 1972. [Google Scholar]
- Tartar, L. An Introduction to Sobolev Spaces and Interpolation Spaces; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Stein, E.M. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Wang, X.; Wang, J.R.; Fečkan, M. BP neural network calculus in economic growth modelling of the Group of Seven. Mathematics 2020, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Fečkan, M.; Wang, J.R. Forecasting economic growth of the Group of Seven via fractional-order gradient descent approach. Axioms 2021, 10, 257. [Google Scholar] [CrossRef]
- Sathiyaraj, T.; Wang, J.R.; Balasubramaniam, P. Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems. Appl. Math. Optim. 2021, 84, 2527–2554. [Google Scholar] [CrossRef]
- Liao, Y.M.; Wang, X.; Wang, J.R. Application of fractional grey forecasting model in economic growth of the Group of Seven. Axioms 2022, 11, 155. [Google Scholar] [CrossRef]
- Yang, J.; Fečkan, M.; Wang, J.R. Consensus of linear conformable fractional order multi-agent systems with impulsive control protocols. Asian J. Control 2023, 25, 314–324. [Google Scholar] [CrossRef]
- Wang, J.R.; Liu, S.D.; Fečkan, M. Iterative Learning Control for Equations with Fractional Derivatives and Impulses; Series in Studies in Systems, Decision and Control; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Kirchhoff, G.R. Vorlesungen über Matematische Physik: Mechanik; Druck und von B.G. Teubner: Leipzig, Germany, 1876. [Google Scholar]
- Wang, Y.; Suo, H.M.; Lei, C.Y. Multiple positive solutions for a nonlocal problem involving critical exponent. Electron. J. Differ. Equ. 2017, 2017, 275. [Google Scholar]
- Wang, Y.; Suo, H.M.; Wei, W. Classical solutions for a kind of new Kirchhoff-type problems without boundary constraint. Acta Math. Sci. Ser. A 2020, 40, 857–868. [Google Scholar] [CrossRef]
- Wang, Y. A review on Kirchhoff-type problem with negative modulus. Acta Anal. Funct. Appl. 2020, 22, 230–258. [Google Scholar]
- Huang, H.H.; Sun, C.T. Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus. J. Acoust. Soc. Am. 2012, 132, 2887–2895. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.N.; Hu, G.K.; Huang, G.L.; Sun, C.T. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 2011, 98, 251907. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Suo, H.M.; Lei, C.Y. Existence and uniqueness of positive solutions for a class of nonlocal problems. Acta Anal. Funct. Appl. 2017, 19, 95–103. [Google Scholar]
- Lei, C.Y.; Liao, J.F.; Suo, H.M. Multiple positive solutions for nonlocal problems involving a sign-changing potential. Electron. J. Differ. Equ. 2017, 2017, 9. [Google Scholar]
- Lei, C.Y.; Chu, C.M.; Suo, H.M. Positive solutions for a nonlocal problem with singularity. Electron. J. Differ. Equ. 2017, 2017, 85. [Google Scholar]
- Wang, Y.; Ye, H.Y.; Suo, H.M. Existence of positive solution for a nonlocal problem with Hardy-Sobolev critical exponent. Math. Appl. 2019, 32, 452–456. [Google Scholar]
- Wang, Y.; Liang, J.P.; Suo, H.M.; Lei, J.; Zhao, S.H.; Ye, H.Y. Classical solutions for nonlocal problems on different unbounded domains. Acta Anal. Funct. Appl. 2019, 21, 325–341. [Google Scholar]
- Chu, C.M.; Xiao, Y.X. The multiplicity of nontrivial solutions for a new p(x)-Kirchhoff-type elliptic problem. J. Funct. Space 2021, 2021, 1569376. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Song, Y.Q. High perturbations of a new Kirchhoff problem involving the p-Laplace operator. Bound. Value Prob. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Wu, D.K.; Suo, H.M.; Peng, L.Y.; Tian, G.Q.; Chu, C.M. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity and critical exponents. AIMS Math. 2022, 7, 7909–7935. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhao, M.; Zhang, D.L.; Liang, S.H. On the nonlocal Schrödinger-Poisson type system in the Heisenberg group. Math. Meth. Appl. Sci. 2022, 45, 1558–1572. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, R.H.; Hao, X.Y.; Wei, Q.P. Research on the existence of solutions for a transmission problem with critical exponent. Math. Appl. 2022, 35, 317–326. [Google Scholar]
- Wang, Y.; Yang, X. Infinitely many solutions for a new Kirchhoff-type equation with subcritical exponent. Appl. Anal. 2022, 101, 1038–1051. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Q.P.; Suo, H.M. Three solutions for a new Kirchhoff-type problem. Differ. Equ. Appl. 2022, 14, 1–16. [Google Scholar] [CrossRef]
- Ye, Y.W.; Tang, C.L. Multiple solutions for Kirchhoff-type equations in RN. J. Math. Phys. 2013, 54, 081508. [Google Scholar] [CrossRef]
- He, X.M.; Zou, W.M. Ground states for nonlinear Kirchhoff equations with critical growth. Ann. Mat. Pura Appl. 2014, 193, 473–500. [Google Scholar] [CrossRef]
- Deng, Y.B.; Peng, S.J.; Shuai, W. Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3. J. Funct. Anal. 2015, 269, 3500–3527. [Google Scholar] [CrossRef]
- Li, G.B.; Niu, Y.H. The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation. Acta. Math. Sci. 2020, 40, 90–112. [Google Scholar] [CrossRef]
- Ji, C.; Rădulescu, V.D. Concentration phenomena for magnetic Kirchhoff equations with critical growth. Discrete Contin. Dyn. Syst. 2021, 41, 5551–5577. [Google Scholar] [CrossRef]
- Shen, Z.P.; Yu, J.S. Multiple solutions for weighted Kirchhoff equations involving critical Hardy-Sobolev exponent. Adv. Nonlinear Anal. 2021, 10, 673–683. [Google Scholar] [CrossRef]
- Massa, E. Concave-convex behavior for a Kirchhoff type equation with degenerate nonautonomous coefficient. Nonlinear Differ. Equ. Appl. 2021, 28, 58. [Google Scholar] [CrossRef]
- Chen, S.T.; Tang, X.H.; Wei, J. Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth. Z. Angew. Math. Phys. 2021, 72, 38. [Google Scholar] [CrossRef]
- Hu, T.X.; Tang, C.L. Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations. Calc. Var. Partial. Differ. Equ. 2021, 60, 210. [Google Scholar] [CrossRef]
- Xie, Q.L.; Zhou, B.X. A study on the critical Kirchhoff problem in high-dimensional space. Z. Angew. Math. Phys. 2022, 73, 4. [Google Scholar] [CrossRef]
- Lei, C.Y.; Lei, Y.T.; Zhang, B.L. Solutions for critical Kirchhoff-type problems with near resonance. J. Math. Anal. Appl. 2022, 513, 126205. [Google Scholar] [CrossRef]
- Deng, Y.B.; Huang, W.T. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete Contin. Dyn. Syst. Ser. S 2019, 12, 1929–1954. [Google Scholar] [CrossRef] [Green Version]
- Pan, N.; Pucci, P.; Xu, R.Z.; Zhang, B.L. Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms. J. Evol. Equ. 2019, 19, 615–643. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Hu, D.; Yang, D. Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity. Nonlinear Anal. 2020, 198, 111899. [Google Scholar] [CrossRef]
- Ambrosio, V. Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields. Discrete Contin. Dyn. Syst. 2020, 40, 781–815. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.G.; Zhang, H.B. Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electron. Res. Arch. 2021, 29, 3281–3295. [Google Scholar] [CrossRef]
- Shao, L.Y.; Chen, H.B. Multiplicity and concentration of nontrivial solutions for a class of fractional Kirchhoff equations with steep potential well. Math. Methods Appl. Sci. 2022, 45, 2349–2363. [Google Scholar] [CrossRef]
- Gu, G.Z.; Yang, Z.P. On the singularly perturbation fractional Kirchhoff equations: Critical case. Adv. Nonlinear Anal. 2022, 11, 1097–1116. [Google Scholar] [CrossRef]
- Ekeland, I. On the variational principle. J. Math. Anal. Appl. 1974, 47, 324–353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wei, W.; Zhou, Y. The Existence, Uniqueness, and Multiplicity of Solutions for Two Fractional Nonlocal Equations. Axioms 2023, 12, 45. https://doi.org/10.3390/axioms12010045
Wang Y, Wei W, Zhou Y. The Existence, Uniqueness, and Multiplicity of Solutions for Two Fractional Nonlocal Equations. Axioms. 2023; 12(1):45. https://doi.org/10.3390/axioms12010045
Chicago/Turabian StyleWang, Yue, Wei Wei, and Ying Zhou. 2023. "The Existence, Uniqueness, and Multiplicity of Solutions for Two Fractional Nonlocal Equations" Axioms 12, no. 1: 45. https://doi.org/10.3390/axioms12010045
APA StyleWang, Y., Wei, W., & Zhou, Y. (2023). The Existence, Uniqueness, and Multiplicity of Solutions for Two Fractional Nonlocal Equations. Axioms, 12(1), 45. https://doi.org/10.3390/axioms12010045