Stability Analysis of Fractional-Order Predator-Prey System with Consuming Food Resource
Abstract
:1. Introduction
2. Preliminaries
3. The Model
4. Analysis of the Model
4.1. Existence and Uniqueness
4.2. Non-Negativity of the Model
5. Equilibrium Points of the Model
- Predator-free, one prey-free fixed point
- 2.
- Prey (using another resource as a predator does) free fixed point
- 3.
- Prey (using the same resource as a predator does) free fixed point
- 4.
- Preys free fixed point
- 5.
- Coexistence fixed point
6. Stability of Equilibrium Points
6.1. Stability of Coexistence Fixed Point
6.2. Stability of Prey Free Equilibrium Point
7. Numerical Results
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boccara, N. Modeling Complex Systems; Springer: Berlin/Heildelberg, Germany, 2010. [Google Scholar]
- Khajanchi, S. Modeling the dynamics of stage-structure predator-prey system with Monod-Haldane type response function. Appl. Math. Comput. 2017, 302, 122–143. [Google Scholar] [CrossRef]
- Nosrati, K.; Shafiee, M. Dynamic analysis of fractional-order singular Holling type-II predator-prey system. Appl. Math. Comput. 2017, 313, 159–179. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Y.; Li, J. Dynamical analysis of a stage-structured predator-prey model with cannibalism. Math. Biosci. 2018, 307, 33–41. [Google Scholar] [CrossRef]
- Moustafa, M.; Mohd, M.H.; Ismail, A.I.; Abdullah, F.A. Stage structure and refuge effects in the dynamical analysis of a frac-tional order Rosenzweig-MacArthur prey-predator model. Prog. Fract. Differ. Appl. 2019, 5, 1–16. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1927, 115, 700–721. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-L.; Zhang, L.; Teng, Z.; Jiang, Y.-L.; Muhammadhaji, A. Global stability of an SI epidemic model with feedback controls in a patchy environment. Appl. Math. Comput. 2018, 321, 372–384. [Google Scholar] [CrossRef]
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: London, UK, 1992. [Google Scholar]
- Stone, L.; Shulgin, B.; Agur, Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Math. Comput. Model. 2000, 31, 207–215. [Google Scholar] [CrossRef]
- Mukherjee, D. Hopf bifurcation in an eco-epidemic model. Appl. Math. Comput. 2010, 217, 2118–2124. [Google Scholar] [CrossRef]
- Juneja, N.; Agnihotri, K. Conservation of a predator species in SIS prey-predator system using optimal taxation policy. Chaos Solitons Fractals 2018, 116, 86–94. [Google Scholar] [CrossRef]
- Hilker, F.M.; Schmitz, K. Disease-induced stabilization of predator-prey oscillations. J. Theor. Biol. 2008, 255, 299–306. [Google Scholar] [CrossRef]
- Mortoja, G.; Panja, P.; Mondal, K. Dynamics of a predator-prey model with nonlinear incidence rate, Crowley-Martin type functional response and disease in prey population. Ecol. Genet. Gen. 2018, 10, 100035. [Google Scholar] [CrossRef]
- Meng, X.-Y.; Qin, N.-N.; Huo, H.-F. Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. J. Biol. Dyn. 2018, 12, 342–374. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, D.; Haque, M. A predator-prey model with disease in the prey species only. Math. Methods Appl. Sci. 2006, 30, 911–929. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Das, H.; Sarwardi, S. Dynamics of an eco-epidemiological system with disease in competitive prey species. J. Appl. Math. Comput. 2019, 62, 525–545. [Google Scholar] [CrossRef]
- Rana, S.; Samanta, S.; Bhattacharya, S. The interplay of Allee effect in an eco-epidemiological system with disease in predator population. Bull. Calcutta Math. Soc. 2016, 108, 103–122. [Google Scholar]
- Juneja, N.; Agnihotri, K. Global stability of harvested prey-predator model with infection in predator species. In Information and Decision Sciences; Springer: Berlin/Heidelberg, Germany, 2018; pp. 559–568. [Google Scholar]
- Pal, P.J.; Haque, M.; Mandal, P.K. Dynamics of a predator-prey model with disease in the predator. Math. Methods Appl. Sci. 2013, 37, 2429–2450. [Google Scholar] [CrossRef]
- Bulai, I.M.; Hilker, F.M. Eco-epidemiological interactions with predator interference and infection. Theor. Popul. Biol. 2019, 130, 191–202. [Google Scholar] [CrossRef]
- Agnihotri, K.; Juneja, N. An eco-epidemic model with disease in both prey and predator. IJAEEE 2015, 4, 50–54. [Google Scholar]
- Hsieh, Y.-H.; Hsiao, C.-K. Predator-prey model with disease infection in both populations. Math. Med. Biol. A J. IMA 2008, 25, 247–266. [Google Scholar] [CrossRef]
- Gao, X.; Pan, Q.; He, M.; Kang, Y. A predator-prey model with diseases in both prey and predator. Phys. A Stat. Mech. Its Appl. 2013, 392, 5898–5906. [Google Scholar] [CrossRef]
- Almeida, R.; Cruz, B.; Martins, N.; Monteiro, T. An epidemiological MSEIR model described by the Caputo fractional deriva-tive. Int. J. Dyn. Control 2018, 7, 776–784. [Google Scholar] [CrossRef] [Green Version]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2005, 45, 765–771. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ansari, S.P.; Agrawal, S.K.; Das, S. Stability analysis of fractional-order generalized chaotic susceptible-infected-recovered epidemic model and its synchronization using active control method. Pramana 2014, 84, 23–32. [Google Scholar] [CrossRef]
- Laskin, N. Fractional quantum mechanics. Phys. Rev. E 2000, 62, 3135–3145. [Google Scholar] [CrossRef] [Green Version]
- Mandal, M.; Jana, S.; Nandi, S.K.; Kar, T.K. Modeling and of a fractional-order prey-predator system incorporating harvesting. Model. Earth Syst. Environ. 2021, 7, 1159–1176. [Google Scholar] [CrossRef]
- Karakaya, H.; Ozturk, I.; Kartal, S.; Gurcan, F. Dynamical analysis of discretized Logistic model with Caputo-Fabrizio fractional derivative. Comput. Ecol. Softw. 2021, 11, 21–34. [Google Scholar]
- Yousef, F.B.; Yousef, A.; Maji, C. Effects of fear in a fractional-order predator-prey system with predator density-dependent prey mortality. Chaos Solitons Fractals 2021, 145, 110711. [Google Scholar] [CrossRef]
- Song, P.; Zhao, H.; Zhang, X. Dynamic analysis of a fractional order delayed predator-prey system with harvesting. Theory Biosci. 2016, 135, 59–72. [Google Scholar] [CrossRef]
- Mondal, S.; Lahiri, A.; Bairagi, N. Analysis of a fractional order eco-epidemiological model with prey infection and type 2 functional response. Math. Methods Appl. Sci. 2017, 40, 6776–6789. [Google Scholar] [CrossRef]
- Chinnathambi, R.; Rihan, F.A. Stability of fractional-order prey-predator system with time-delay and Monod-Haldane functional response. Nonlinear Dyn. 2018, 92, 1637–1648. [Google Scholar] [CrossRef]
- Moustafa, M.; Mohd, M.H.; Ismail, A.I.; Abdullah, F.A. Dynamical analysis of a fractional-order Rosenzweig-MacArthur model incorporating a prey refuge. Chaos Solitons Fractals 2018, 109, 1–13. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, J.; Wang, Z. Stability analysis of a fractional-order diffused prey-predator model with prey refuges. Phys. A Stat. Mech. Its Appl. 2019, 526, 120773. [Google Scholar] [CrossRef]
- Sania, Q.; Abdullah, Y.; Shaheen, A. Fractional numerical dynamics for the logistic population growth model under conformable Caputo: A case study with real observation. Phys. Scr. 2021, 96, 114002. [Google Scholar]
- dos Santos, J.P.C.; Cardoso, L.C.; Monteiro, E.; Lemes, N.H.T. A Fractional-Order Epidemic Model for Bovine Babesiosis Disease and Tick Populations. Abstr. Appl. Anal. 2015, 2015, 729894. [Google Scholar] [CrossRef]
- Zhao, D.; Luo, M. Representations of acting processes and memory effects: General fractional derivative and its application to theory of heat conduction with finite wave speeds. Appl. Math. Comput. 2018, 346, 531–544. [Google Scholar] [CrossRef]
- Bolton, L.; Cloot, A.H.J.J.; Schoombie, S.W.; Slabbert, J.P. A proposed fractional-order Gompertz model and its application to tumour growth data. Math. Med. Biol. A J. IMA 2014, 32, 187–209. [Google Scholar] [CrossRef]
- Li, H.-L.; Muhammadhaji, A.; Zhang, L.; Teng, Z. Stability analysis of a fractional-order predator-prey model incorporating a constant prey refuge and feedback control. Adv. Differ. Equ. 2018, 2018, 325. [Google Scholar] [CrossRef]
- Ahmed, E.; El-Sayed, A.; El-Saka, H.A. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 2007, 325, 542–553. [Google Scholar] [CrossRef] [Green Version]
- Nugraheni, K.; Trisilowati, T.; Suryanto, A. Dynamics of a Fractional Order Eco-Epidemiological Model. J. Trop. Life Sci. 2017, 7, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Delavari, H.; Baleanu, D.; Sadati, J. Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 2011, 67, 2433–2439. [Google Scholar] [CrossRef]
- Yadav, A.K.S.; Sora, M. An optimized deep neural network-based financial statement fraud detection in text mining. 3ciencias 2021, 10, 77–105. [Google Scholar] [CrossRef]
- Delgado, M.F.; Esenarro, D.; Regalado, F.F.J.; Reátegui, M.D. Methodology based on the NIST cybersecurity framework as a proposal for cybersecurity management in government organizations. 3c TIC Cuad. Desarro. Apl. A Las TIC 2021, 10, 123–141. [Google Scholar] [CrossRef]
- Gao, J.; Alotaibi, F.S.; Ismail, R.I. The Model of Sugar Metabolism and Exercise Energy Expenditure Based on Fractional Linear Regression Equation. Appl. Math. Nonlinear Sci. 2021, 7, 123–132. [Google Scholar] [CrossRef]
- Liu, C. Precision algorithms in second-order fractional differential equations. Appl. Math. Nonlinear Sci. 2021, 7, 155–164. [Google Scholar] [CrossRef]
- Shatanawi, W.; Raza, A.; Arif, M.S.; Rafiq, M.; Bibi, M.; Mohsin, M. Essential features preserving dynamics of stochastic Dengue model. Comput. Model. Eng. Sci. 2021, 126, 201–215. [Google Scholar] [CrossRef]
- Area, I.; Losada, J.; Nieto, J.J. On Fractional Derivatives and Primitives of Periodic Functions. Abstr. Appl. Anal. 2014, 2014, 392598. [Google Scholar] [CrossRef] [Green Version]
- Shatanawi, W.; Raza, A.; Arif, M.S.; Abodayeh, K.; Rafiq, M.; Bibi, M. Design of nonstandard computational method for stochastic susceptible-infected-treated-recovered dynamics of coronavirus model. Adv. Differ. Equ. 2020, 2020, 505. [Google Scholar] [CrossRef]
- Li, X.; Wu, R. Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system. Nonlinear Dyn. 2014, 78, 279–288. [Google Scholar] [CrossRef]
- Heinonen, J. Lipschitz function. In Lectures on Analysis on Metric Spaces; Springer: New York, NY, USA, 2001. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010; p. 547. [Google Scholar]
- Arif, M.S.; Raza, A.; Rafiq, M.; Bibi, M.; Abbasi, J.N.; Nazeer, A.; Javed, U. Numerical Simulations for Stochastic Computer Virus Propagation Model. Comput. Mater. Contin. 2020, 62, 61–77. [Google Scholar] [CrossRef]
- Bibi, M.; Nawaz, Y.; Arif, M.S.; Abbasi, J.N.; Javed, U.; Nazeer, A. A finite difference method and effective modification of gradient descent optimization algorithm for MHD fluid flow over a linearly stretching surface. Comput. Mater. Contin. 2020, 62, 657–677. [Google Scholar]
- Arif, S.M.; Biwi, M.; Jahangir, A. Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm. Comput. Mater. Contin. 2018, 54, 181–195. [Google Scholar]
- Raza, A.; Rafiq, M.; Baleanu, D.; Arif, M.S. Numerical simulations for stochastic meme epidemic model. Adv. Differ. Equ. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
Parameters | Physical Meaning |
---|---|
Density of Predator | |
Density of prey using the same resources as the predator | |
Density of Prey using different resources | |
Rate of consumption of common food by the predator | |
Rate of consumption of common food by prey | |
c | Rate of consumption of non-common food by prey |
Death rate for prey due to predation | |
Common food resources | |
g | Non-common food resource for prey |
η | Natural death rate of predator |
Natural death rate of first prey | |
Natural death rate of the second prey |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arif, M.S.; Abodayeh, K.; Ejaz, A. Stability Analysis of Fractional-Order Predator-Prey System with Consuming Food Resource. Axioms 2023, 12, 64. https://doi.org/10.3390/axioms12010064
Arif MS, Abodayeh K, Ejaz A. Stability Analysis of Fractional-Order Predator-Prey System with Consuming Food Resource. Axioms. 2023; 12(1):64. https://doi.org/10.3390/axioms12010064
Chicago/Turabian StyleArif, Muhammad Shoaib, Kamaleldin Abodayeh, and Asad Ejaz. 2023. "Stability Analysis of Fractional-Order Predator-Prey System with Consuming Food Resource" Axioms 12, no. 1: 64. https://doi.org/10.3390/axioms12010064
APA StyleArif, M. S., Abodayeh, K., & Ejaz, A. (2023). Stability Analysis of Fractional-Order Predator-Prey System with Consuming Food Resource. Axioms, 12(1), 64. https://doi.org/10.3390/axioms12010064