Certain q-Analogue of Fractional Integrals and Derivatives Involving Basic Analogue of the Several Variable Aleph-Function
Abstract
:1. Introduction and Preliminaries
2. q-Analogue of the Several Variable Aleph-Function
- (i)
- has simple poles at with their residues
- (ii)
- (i)
- here and elsewhere, an empty product is interpreted as unity;
- (ii)
- (iii)
- which satisfy, , and;
- (iv)
- ;
- (v)
- the values of and are assumed to be positive for standardization purposes, the definition of the basic analogue of the several variable Aleph-function, provided above, will still make sense, even if some of these values are zero;
- (vi)
- andare assumed to be complex numbers.
- (vii)
- the contoursin the complex-planesare of the Mellin-Barnes type, running from to (if necessary) with indentations, such that all the poles of are separated from those of and .
- (viii)
- for large values of, the integrals convergeif.
3. Main Results
4. Leibniz Type Rule for Derivatives and their Extensions and Applications
5. Particular Cases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Exton, H. q-Hypergeometric Functions and Applications; Ellis Horwood Limited: Chichester, UK, 1983; 347p. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Rajković, P.M.; Marinković, S.D.M.; Stanković, S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discret. Math. 2007, 1, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.K.; Purohit, S.D.; Kalla, S.L. Kober fractional q-integral of multiple hypergeometric function. Algebr. Groups Geom. 2007, 24, 55–74. [Google Scholar]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Al-Salam, W.A. q-analogues of Cauchy’s formulas. Proc. Amer. Math. Soc. 1966, 17, 616–621. [Google Scholar] [CrossRef]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Phil. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Kumar, D.; Ayant, F.Y.; Tariboon, J. On transformation involving basic analogue of multivariable H-function. J. Funct. Spaces 2020, 2020, 2616043. [Google Scholar] [CrossRef]
- Saxena, R.K.; Yadav, R.K.; Kalla, S.L.; Purohit, S.D. Kober fractional q-integral operator of the basic analogue of the H-function. Rev. Téc. Ing. Univ. Zulia. 2005, 28, 154–158. [Google Scholar]
- Yadav, R.K.; Purohit, S.D. On application of Kober fractional q-integral operator to certain basic hypergeometric function. J. Rajasthan Acad. Phy. Sci. 2006, 5, 437–448. [Google Scholar]
- Yadav, R.K.; Purohit, S.D.; Kalla, S.L.; Vyas, V.K. Certain fractional q-integral formulae for the generalized basic hypergeometric functions of two variables. J. Inequal. Spec. Funct. 2010, 1, 30–38. [Google Scholar]
- Yadav, R.K.; Purohit, S.D.; Vyas, V.K. On transformations involving generalized basic hypergeometric function of two variables. Rev. Téc. Ing. Univ. Zulia. 2010, 33, 176–182. [Google Scholar]
- Purohit, S.D.; Yadav, R.K. On generalized fractional q-integral operators involving the q-gauss hypergeometric function. Bull. Math. Anal. Appl. 2010, 2, 35–44. [Google Scholar]
- Kumar, D.; Baleanu, D.; Ayant, F.Y.; Südland, N. On transformation involving basic analogue to the Aleph-function of two variables. Fractal Fract. 2022, 6, 71. [Google Scholar] [CrossRef]
- Galué, L. Generalized Weyl fractional q–integral operator. Algebr. Groups Geom. 2009, 26, 163–178. [Google Scholar]
- Ayant, F. An integral associated with the Aleph-functions of several variables. Int. J. Math. Trends Technol. 2016, 31, 142–154. [Google Scholar] [CrossRef]
- Sharma, C.K.; Ahmad, S.S. On the multivariable I-function. Acta Cienc. Indica Math. 1994, 20, 113–116. [Google Scholar]
- Srivastava, H.M.; Panda, R. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 1975, 24, 119–137. [Google Scholar]
- Agarwal, R.P. An extension of Meijer’s G-function. Proc. Nat. Inst. Sci. India Part A 1965, 31, 536–546. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherland; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Lecture Notes in Mathematics 2056; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Galué, L. Weyl fractional q-integral operator involving a generalized basic hypergeometric function. Rev. Acad. Canar. Cienc. 2014, 26, 21–33. [Google Scholar]
- Dutta, B.K.; Arora, L.K. On a basic analogue of generalized H-function. Int. J. Math. Engg. Sci. 2011, 1, 21–30. [Google Scholar]
- Ahmad, A.; Jain, R.; Jain, D.K. q-analogue of Aleph-function and its transformation formulae with q-derivative. J. Stat. Appl. Pro. 2017, 6, 567–575. [Google Scholar] [CrossRef]
- Sahni, N.; Kumar, D.; Ayant, F.Y.; Singh, S. A transformation involving basic multivariable I-function of Prathima. J. Ramanujan Soc. Math. Math. Sci. 2021, 8, 95–108. [Google Scholar]
- Kumar, D. Generalized fractional differintegral operators of the Aleph-function of two variables. J. Chem. Biol. Phys. Sci. Sect. C 2016, 6, 1116–1131. [Google Scholar]
- Watanabe, Y. Notes on the generalized derivative of Riemann–Liouville and its application to Leibnitz’sformula. I and II. Tôhoku Math. J. 1931, 34, 8–41. [Google Scholar]
- Osler, T.J. Leibniz rule for fractional derivatives generalized and application to infinite series. SIAM J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Agarwal, R.P. Fractional q-derivatives and q-integrals and certain hypergeometric transformations. Ganita 1976, 27, 25–32. [Google Scholar]
- Al-Salam, W.A.; Verma, A. A fractional Leibniz q-formula. Pac. J. Math. 1975, 60, 1–9. [Google Scholar]
- Liouville, J. Mèmoire sur le calcul des différentielles à indices quelconques. J. I’Ecole Polytech. 1832, 13, 71–162. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Purohit, S.D. On a q-extension of the Leibniz rule via Weyl type of q-derivative operator. Kyungpook Math. J. 2010, 50, 473–482. [Google Scholar] [CrossRef]
- Saxena, R.K.; Modi, G.C.; Kalla, S.L. A basic analogue of H-function of two variable. Rev. Téc. Ing. Univ. Zulia 1987, 10, 35–39. [Google Scholar]
- Saxena, R.K.; Kumar, R. A basic analogue of the generalized H-function. Le Mat. 1995, 50, 263–271. [Google Scholar]
- Saxena, R.K.; Modi, G.C.; Kalla, S.L. A basic analogue of Fox’s H-function. Rev. Téc. Ing. Univ. Zulia 1983, 6, 139–143. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume 1. [Google Scholar]
- Available online: https://en.wikipedia.org/wiki/Quantum_calculus (accessed on 9 December 2022).
- Al-Raeei, M. Applying fractional quantum mechanics to systems with electrical screening effects. Chaos Solitons Fractals 2021, 150, 111209. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Yang, S.-R.E.; Cha, M.-C. Soliton fractional charge of disordered graphene nanoribbon. J. Phys. Condens. Matter 2019, 31, 265601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylvain, T.T.A.; Patrice, E.A.; Marie, E.E.J.; Pierre, O.A.; Hubert, B.-B.G. Analytical solution of the steady-state atmospheric fractional diffusion equation in a finite domain. Pramana 2021, 95, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Ayant, F.; Südland, N.; Choi, J. Certain q-Analogue of Fractional Integrals and Derivatives Involving Basic Analogue of the Several Variable Aleph-Function. Axioms 2023, 12, 51. https://doi.org/10.3390/axioms12010051
Kumar D, Ayant F, Südland N, Choi J. Certain q-Analogue of Fractional Integrals and Derivatives Involving Basic Analogue of the Several Variable Aleph-Function. Axioms. 2023; 12(1):51. https://doi.org/10.3390/axioms12010051
Chicago/Turabian StyleKumar, Dinesh, Frédéric Ayant, Norbert Südland, and Junesang Choi. 2023. "Certain q-Analogue of Fractional Integrals and Derivatives Involving Basic Analogue of the Several Variable Aleph-Function" Axioms 12, no. 1: 51. https://doi.org/10.3390/axioms12010051
APA StyleKumar, D., Ayant, F., Südland, N., & Choi, J. (2023). Certain q-Analogue of Fractional Integrals and Derivatives Involving Basic Analogue of the Several Variable Aleph-Function. Axioms, 12(1), 51. https://doi.org/10.3390/axioms12010051