Deterministic and Random Generalized Complex Numbers Related to a Class of Positively Homogeneous Functionals
Abstract
:1. Introduction
2. The Complex Algebraic Structure
3. Euler-Type Trigonometric Representation of Generalized Complex Numbers
4. Generalized Complex Differentiability
5. Random Numbers
5.1. Moments
5.2. Uniform Probability Distribution
5.3. Generalized Circle Numbers
5.4. The Distribution of
5.5. Star-Shaped Distributed Random Generalized Complex Numbers
6. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Hamilton, W.R. On quaternions. Proc. R. Ir. Acad. 1847, 3, 89–92. [Google Scholar]
- Hamilton, W.R. Lectures on Quaternions; Hodges and Smith: Dublin, Ireland, 1853. [Google Scholar]
- Graves, J.T. On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1845, 26, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Conway, J.H.; Derek, A.S. On Quaternions and Octonions; A.K. Peters: Boca Raton, FL, USA; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Luna-Elizarraras, M.E.; Shapiro, M.; Struppa, D.C.; Vajiac, A. Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers; Birkhäuser: Cham, Switzerland, 2015. [Google Scholar]
- Price, G.B. An introduction to Multicomplex Spaces and Functions; Dekker, M., Ed.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Clifford, W.K. Preliminary sketch of biquaternions. Proc. Lond. Math. Soc. 1873, s1-4, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Snygg, J. Clifford Algebra: A Computational Tool for Physicists; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Richter, W.-D. On lp-complex numbers. Symmetry 2020, 12, 877. [Google Scholar] [CrossRef]
- Wooding, R.A. The multivariate distribution of complex normal variables. Biometrika 1956, 43, 212–215. [Google Scholar] [CrossRef]
- Goodman, N.R. Statistical analysis based on a certain multivariate complex Gaussian distribution (An introduction). Ann. Math. Stat. 1963, 34, 152–177. [Google Scholar] [CrossRef]
- Fang, K.-T.; Kotz, S.; Ng, K. Symmetric Multivariate and Related Distributions; Chapman Hall: London, UK, 1990. [Google Scholar]
- Khurshid, A.; Al-Hemyari, Z.A.; Kamal, S. On complex random variables. Pak. J. Stat. Oper. Res. 2012, VIII, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Mac Llwaine, P.S.W.; Plumpton, C. Coordinate geometry and complex numbers. In Core Books in Advanced Mathematics; Macmillan Education Limited: Houndmills, Basingstoke Hamshire, UK; London, UK, 1984. [Google Scholar]
- Stillwell, J. Numbers and Geometry; Springer: New York, NY, USA, 1998. [Google Scholar]
- Stein, E.M.; Shakarchi, R. Complex Analysis; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Harkin, A.A.; Harkin, J.B. Geometry of Generalized Complex Numbers. Math. Mag. 2004, 77, 118–129. [Google Scholar] [CrossRef]
- Richter, W.-D. Complex numbers related to semi-antinorms, ellipses or matrix homogeneous functionals. Axioms 2021, 10, 340. [Google Scholar] [CrossRef]
- Olhede, S.C. On probability density functions for complex variables. IEEE Trans. Inf. Theory 2006, 52, 1212–1217. [Google Scholar] [CrossRef]
- Van den Bos, A. The multivariate complex normal distribution-A generalization. IEEE Trans. Inf. Theory 1995, 41, 537–539. [Google Scholar] [CrossRef]
- Picinbono, B. On circularity. IEEE Trans. Signal Process. 1994, 42, 3473–3482. [Google Scholar] [CrossRef]
- Ollila, E. On the circularity of a complex random variable. IEEE Signal Process. Lett. 2008, 15, 841–844. [Google Scholar] [CrossRef]
- Krishnaiah, P.R.; Lin, J. Complex elliptically symmetric distributions. Commun. Stat. Theory Methods 1986, 15, 3693–3718. [Google Scholar] [CrossRef]
- Ollila, E.; Koivunen, V. Generalized complex elliptical distributions. In Proceedings of the Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal, Barcelona, Spain, 18–21 July 2004; pp. 460–464. [Google Scholar]
- Amblard, P.; Gaeta, M.; Lacoume, J. Statistics for complex variables and signals—Part I: Variables. Signal Process. 1996, 53, 1–13. [Google Scholar] [CrossRef]
- Eriksson, J.; Ollila, E.; Koivunen, V. Statistics for complex random variables revisited. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 3565–3568. [Google Scholar]
- Walden, A.T.; Rubin-Delanchy, P. On testing for impropriety of complex-valued Gaussian vectors. IEEE Trans. Signal Process. 2009, 57, 835–842. [Google Scholar] [CrossRef]
- Dryden, I.L.; Mardia, K.V. Statistical Shape Analysis; John Wiley: New York, NY, USA, 1998. [Google Scholar]
- Ebbinghaus, H.-D.; Hermes, H.; Hirzebruch, F.; Koecher, M.; Mainzer, K.; Neukirch, J.; Prestel, A.; Remmert, R. Numbers; Springer: New York, NY, USA, 1991. [Google Scholar]
- Gauss, C.F. Werke; posthum publication of collected work in 2011; Cambridge Library Collection: Cambridge, UK, 1917; Volume 10, Part 1. [Google Scholar]
- Dedekind, R. Gesammelte Mathematische, Werke 3; Friedrich Vieweg und Sohn: Braunschweig, Germany, 1932. [Google Scholar]
- Crowe, M.J. A History of Vector Analysis. 1969. Available online: https://www.researchgate.net/publication/244957729-A-History-of-Vector-Analysis (accessed on 17 March 2022).
- Cauchy, A.L. Cours d’Analysede l’Ecole Royale Polytechnique (1821); Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hankel, H. Theorie der Komplexen Zahlensysteme; Leopold Voss: Leipzig, Germany, 1867. [Google Scholar]
- Hamilton, W.R. Theory of Conjugate Functions, or Algebraic Couples, with a Preliminary and Elementary Essay on Algebra as the Science of Pure Time; Philip Dixon Hardy: Dublin, Ireland, 1835. [Google Scholar]
- Riemann, B. Bernhard Riemann’s Gesammelte mathematische Werke und Wissenschaftlicher Nachlass; B.G. Teubner: Leipzig, Germany, 1892. [Google Scholar]
- Euler, L. Introductio in Analysin Infinitorum; Apud Marcum-Michaelem Bousquet Socios: Lausanna, Switzerland, 1748. [Google Scholar]
- Richter, W.-D. Circle numbers for star-discs. ISNR Geom. 2011, 2011, 479262. [Google Scholar] [CrossRef] [Green Version]
- Richter, W.-D. Ellipses numbers and geometric measure representations. J. Appl. Anal. 2011, 17, 165–179. [Google Scholar] [CrossRef]
- Richter, W.-D. Star-shaped distributions: Euclidean and non-Euclidean representations. In Proceedings of the 60th World Statistics Congress 2015, Rio de Janeiro, Brazil, 26–31 July 2015. [Google Scholar]
- Richter, W.-D. Norm contoured distributions in . Lect. Notes Semin. Interdiscip. Mat. 2015, 12, 179–199. [Google Scholar]
- Moszyńska, M.; Richter, W.-D. Reverse triangle inequality. Antinorms and semi-antinorms. Stud. Sci. Math. Hung. 2012, 49, 120–138. [Google Scholar] [CrossRef]
- Cambanis, S.; Huang, S.; Simons, G. On the theory of elliptically contoured distributions. J. Mult. Anal. 1981, 11, 368–385. [Google Scholar] [CrossRef] [Green Version]
- Richter, W.-D. Three-complex numbers and related algebraic structures. Symmetry 2021, 13, 342. [Google Scholar] [CrossRef]
- Hahn, S. Complex variable frequency electric circuit theory. Proc. IEEE 1964, 52, 735–736. [Google Scholar] [CrossRef]
- Buelow, T. Hypercomplex Spectral Signal Representation for the Processing and Analysis of Images; Bericht Nr. 99-3; Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität: Kiel, Germany, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, W.-D. Deterministic and Random Generalized Complex Numbers Related to a Class of Positively Homogeneous Functionals. Axioms 2023, 12, 60. https://doi.org/10.3390/axioms12010060
Richter W-D. Deterministic and Random Generalized Complex Numbers Related to a Class of Positively Homogeneous Functionals. Axioms. 2023; 12(1):60. https://doi.org/10.3390/axioms12010060
Chicago/Turabian StyleRichter, Wolf-Dieter. 2023. "Deterministic and Random Generalized Complex Numbers Related to a Class of Positively Homogeneous Functionals" Axioms 12, no. 1: 60. https://doi.org/10.3390/axioms12010060
APA StyleRichter, W. -D. (2023). Deterministic and Random Generalized Complex Numbers Related to a Class of Positively Homogeneous Functionals. Axioms, 12(1), 60. https://doi.org/10.3390/axioms12010060