Entire Gaussian Functions: Probability of Zeros Absence
Abstract
:1. Introduction: Notations and Preliminaries
2. Notations
3. Auxiliary Statements
4. Upper and Lower Bounds for
5. Examples on Sharpness of Inequalities (16)
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Littlewood, J.E.; Offord, A.C. On the distribution of zeros and a-values of a random integral function. Ann. Math. (II) 1948, 49, 885–952, Errata, 1948, 50, 990–991. [Google Scholar] [CrossRef]
- Littlewood, J.E. Collected Papers; 1948, 2 Vols; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Offord, A.C. The distribution of the values of an entire function whose coefficients are independent random variables. Proc. Lond. Math. Soc. 1965, 14A, 199–238. [Google Scholar] [CrossRef]
- Offord, A.C. The distribution of zeros of series whose coefficients are independent random variables. Indian J. Math. 1967, 9, 175–196. [Google Scholar]
- Offord, A.C. The distribution of the values of a random functions in the unit disk. Stud. Math. 1972, 41, 71–106. [Google Scholar] [CrossRef] [Green Version]
- Offord, A.C. Lacunary entire functions. Math. Proc. Cambr. Phil. Soc. 1993, 114, 67–83. [Google Scholar] [CrossRef]
- Sodin, M.; Tsirelson, B. Random complex zeros. I. Asymptotic normality. Israel J. Math. 2004, 144, 125–149. [Google Scholar] [CrossRef] [Green Version]
- Sodin, M.; Tsirelson, B. Random complex zeros. II. Perturbed lattice. Israel J. Math. 2006, 152, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Sodin, M.; Tsirelson, B. Random complex zeros. III. Decay of the hole probability. Israel J. Math. 2005, 147, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Peres, Y.; Virag, B. Zeros of i.i.d. gaussian power series: A conformally invariant deteminantal process. Acta Math. 2005, 194, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Mahola, M.P.; Filevych, P.V. The value distribution of a random entire function. Mat. Stud. 2010, 34, 120–128. [Google Scholar]
- Mahola, M.P.; Filevych, P.V. The angular value distribution of random analytic functions. Mat. Stud. 2012, 37, 34–51. [Google Scholar]
- Mahola, M.P.; Filevych, P.V. The angular distribution of zeros of random analytic functions. Ufa. Math. J. 2012, 4, 115–127. [Google Scholar]
- Sodin, M. Zeroes of Gaussian analytic functions. In European Congress of Mathematics; European Mathematical Society: Zürich, Switzerland, 2005; pp. 445–458. [Google Scholar]
- Sodin, M. Zeroes of Gaussian analytic functions. arXiv 2004, arXiv:0410343v1. [Google Scholar]
- Nazarov, F.; Sodin, M.; Volberg, A. Transportation to random zeroes by the gadient flow. Geom. Funct. Anal. 2007, 17, 887–935. [Google Scholar] [CrossRef] [Green Version]
- Nazarov, F.; Sodin, M.; Volberg, A. The Jancovici-Lebowitz-Manificat law for large fluctuations of random complex zeroes. Comm. Math. Phys. 2008, 284, 833–865. [Google Scholar] [CrossRef] [Green Version]
- Krishnapur, M. Overcrowding estimates for zeroes of random analytic function. J. Stat. Phys. 2006, 124, 1399–1423. [Google Scholar] [CrossRef] [Green Version]
- Nishry, A. The hole probability for Gaussian entire functions. Israel J. Math. 2011, 186, 197–220. [Google Scholar] [CrossRef] [Green Version]
- Nishry, A. Hole probability for entire functions represented by Gaussian Taylor series. J. Anal. Math. 2012, 118, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Nishry, A. Asymptotics of the hole probability for zeros of random entire functions. Int. Math. Res. Not. IMRN 2010, 15, 2925–2946. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.; Nishry, A.; Peled, R.; Sodin, M. Hole probability for zeroes of gaussian Taylor series with finite radii of convergence. Probab. Theory Relat. Fields 2018, 171, 377–430. [Google Scholar] [CrossRef] [Green Version]
- Nishry, A. Topics in the value distribution of random analytic functions. arXiv 2013, arXiv:1310.7542v2. [Google Scholar]
- Kiro, A.; Nishry, A. Fluctuations for zeros of gaussian Taylor series. J. Lond. Math. Soc. 2021, 104, 1172–1203. [Google Scholar] [CrossRef]
- Buckley, J.; Nishry, A. Gaussian complex zeroes are not always normal: Limit theorems on the disc. arXiv 2022, arXiv:2104.12598v3. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Yao, X.; Ye, Z. Inequalities concerning maximum modulus and zeros of random entire functions. arXiv 2020, arXiv:2012.07453. [Google Scholar]
- Skaskiv, O.B.; Kuryliak, A.O. The probability of absence zeros in the disc for some random analytic functions. Math. Bull. Shevchenko Sci. Soc. 2011, 8, 335–352. [Google Scholar]
- Kuryliak, A.O.; Skaskiv, O.B. Zero distribution of gaussian entire functions. arXiv 2014, arXiv:1401.2776v1. [Google Scholar]
- Goldberg, A.A.; Ostrovskii, I.V. Value Distributions of Meromorphic Functions; With an appendix by A. Eremenko and J.K. Langley; AMS: Providence, RI, USA, 2008. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuryliak, A.; Skaskiv, O. Entire Gaussian Functions: Probability of Zeros Absence. Axioms 2023, 12, 255. https://doi.org/10.3390/axioms12030255
Kuryliak A, Skaskiv O. Entire Gaussian Functions: Probability of Zeros Absence. Axioms. 2023; 12(3):255. https://doi.org/10.3390/axioms12030255
Chicago/Turabian StyleKuryliak, Andriy, and Oleh Skaskiv. 2023. "Entire Gaussian Functions: Probability of Zeros Absence" Axioms 12, no. 3: 255. https://doi.org/10.3390/axioms12030255
APA StyleKuryliak, A., & Skaskiv, O. (2023). Entire Gaussian Functions: Probability of Zeros Absence. Axioms, 12(3), 255. https://doi.org/10.3390/axioms12030255