Logarithmic Coefficients for Some Classes Defined by Subordination
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel detrminant for strongly starlike functions of order alpha. J. Math. Ineq. 2017, 11, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.E.; Adegani, E.A.; Bulut, S.; Motamednezhad, A. The second Hankel determinant problem for a class of bi-close-to-convex functions. Mathematics 2019, 7, 986. [Google Scholar] [CrossRef] [Green Version]
- Salehian, S.; Motamednezhad, A. Second Hankel determinant for certain subclass of bi-univalent functions. Filomat 2021, 35, 2129–2140. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
- Libera, R.J. Univalent α-spiral functions. Canad. J. Math. 1967, 19, 449–456. [Google Scholar] [CrossRef]
- Špaček, L. Contribution á la théorie des fonctions univalentes. Časop Pěst. Mat.-Fys. 1933, 62, 12–19. (In Czech) [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. Some properties related to a certain class of starlike functions. C. R. Acad. Sci. Paris Ser. I 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Masih, V.S.; Kanas, S. Subclasses of starlike and convex functions associated with the limaçon domain. Symmetry 2020, 12, 942. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Milin, I.M. On a property of the logarithmic coefficients of univalent functions. In Metric Questions in the Theory of Functions; Naukova Dumka: Kiev, Ukraine, 1980; pp. 86–90. (In Russian) [Google Scholar]
- Milin, I.M. On a conjecture for the logarithmic coefficients of univalent functions. Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. Steklova 1983, 125, 135–143. (In Russian) [Google Scholar] [CrossRef]
- Milin, I.M. Univalent Functions and Orthonormal Systems; AMS Translations of Mathematical Monographs: Proovidence, RI, USA, 1977; Volume 49. [Google Scholar]
- Duren, P.L.; Leung, Y.J. Logarithmic coefficients of univalent functions. J. Anal. Math. 1979, 36, 36–43. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Springer: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Adegani, E.A.; Cho, N.E.; Jafari, M. Logarithmic coefficients for univalent functions defined by subordination. Mathematics 2019, 7, 408. [Google Scholar] [CrossRef] [Green Version]
- Alimohammadi, D.; Adegani, E.A.; Bulboacă, T.; Cho, N.E. Logarithmic coefficients for classes related to convex functions. Bull. Malays. Math. Sci. Soc. 2021, 44, 2659–2673. [Google Scholar] [CrossRef]
- Alimohammadi, D.; Adegani, E.A.; Bulboacă, T.; Cho, N.E. Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions. J. Funct. Spaces 2021, 2021, 6690027. [Google Scholar] [CrossRef]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. On the third logarithmic coefficient in some subclasses of close-to-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2020, 114, 52. [Google Scholar] [CrossRef] [Green Version]
- Kojić, V.; Pavlović, M. Subharmonicity of |f|p for quasiregular harmonic functions, with applications. J. Math. Anal. Appl. 2008, 324, 742–746. [Google Scholar] [CrossRef] [Green Version]
- Manojlović, V.; Vuorinen, M. On quasiconformal maps with identity boundary values. Trans. Amer. Math. Soc. 2011, 363, 2467–2479. [Google Scholar]
- Obradović, M.; Ponnusamy, S.; Wirths, K.-J. Logarithmic coeffcients and a coefficient conjecture for univalent functions. Monatsh. Math. 2018, 185, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.K. On logarithmic coefficients of close to convex functions. Proc. Amer. Math. Soc. 2016, 144, 1681–1687. [Google Scholar] [CrossRef] [Green Version]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Zaprawa, P. Initial logarithmic coefficients for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2021, 27, 62. [Google Scholar] [CrossRef]
- Ebadian, A.; Mohammed, N.H.; Adegani, E.A.; Bulboacă, T. New results for some generalizations of starlike and convex functions. J. Funct. Spaces 2020, 2020, 7428648. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Raza, M.; Abbas, M. Hankel determinant containing logarithmic coefficients for bounded turning functions connected to a three-leaf-shaped domain. eMathematics 2022, 10, 2924. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Rafiq, A.; Abbas, M.; Iqbal, J. Sharp bounds of Hankel determinant on logarithmic coefficients for functions of bounded turning associated with petal-shaped domain. Mathematics 2022, 10, 1939. [Google Scholar] [CrossRef]
- Khan, B.; Aldawish, I.; Araci, S.; Ghaffar Khan, M. Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function. Fractal Fract. 2022, 6, 261. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2021, 45, 727–740. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2021, 105, 458–467. [Google Scholar] [CrossRef]
- Allu, V.; Arora, V. Second Hankel determinant of logarithmic coefficients of certain analytic functions. arXiv 2021, arXiv:2110.05161. [Google Scholar]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1945, 48, 48–82. [Google Scholar] [CrossRef]
- Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983. [Google Scholar]
- Goel, P.; Sivaprasad Kumar, S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
- Ebadian, A.; Bulboacă, T.; Cho, N.E.; Adegani, E.A. Coefficient bounds and differential subordinations for analytic functions associated with starlike functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2020, 114, 128. [Google Scholar] [CrossRef]
- Kanas, S.; Masih, V.S.; Ebadian, A. Relations of a planar domains bounded by hyperbolas with families of holomorphic functions. J. Inequal. Appl. 2019, 2019, 246. [Google Scholar] [CrossRef] [Green Version]
- Elin, M.; Jacobzon, F.; Tuneski, N. The Fekete-Szegő functional and filtration of generators. Rend. Circ. Mat. Palermo II Ser. 2022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Analouei Adegani, E.; Motamednezhad, A.; Bulboacă, T.; Cho, N.E. Logarithmic Coefficients for Some Classes Defined by Subordination. Axioms 2023, 12, 332. https://doi.org/10.3390/axioms12040332
Analouei Adegani E, Motamednezhad A, Bulboacă T, Cho NE. Logarithmic Coefficients for Some Classes Defined by Subordination. Axioms. 2023; 12(4):332. https://doi.org/10.3390/axioms12040332
Chicago/Turabian StyleAnalouei Adegani, Ebrahim, Ahmad Motamednezhad, Teodor Bulboacă, and Nak Eun Cho. 2023. "Logarithmic Coefficients for Some Classes Defined by Subordination" Axioms 12, no. 4: 332. https://doi.org/10.3390/axioms12040332
APA StyleAnalouei Adegani, E., Motamednezhad, A., Bulboacă, T., & Cho, N. E. (2023). Logarithmic Coefficients for Some Classes Defined by Subordination. Axioms, 12(4), 332. https://doi.org/10.3390/axioms12040332