Radius of Uniformly Convex γ-Spirallikeness of Combination of Derivatives of Bessel Functions
Abstract
:1. Introduction
- (i)
- For , the zeros of are either real or purely imaginary.
- (ii)
- For , where is the largest real root of the quadratic the the zeros of are real.
- (iii)
- If , and , the zeros of are all real, except for a single pair that is conjugate and purely imaginary.
2. Zeros of Hyperbolic Polynomials and the Laguerre–Pólya Class of Entire Functions
3. Main Results
- If , , then the radius of uniformly convex γ-spirallikeness of the function is the smallest positive root of the equation
- If then the radius of uniformly convex γ-spirallikeness of the function is the smallest positive root of the equation
- If then the radius of uniformly convex γ-spirallikeness of the function is the smallest positive root of the equation
and | and | and | |||||||
---|---|---|---|---|---|---|---|---|---|
- Let . The function is uniformly convex γ-spirallike if
- The function is uniformly convex γ-spirallike if
- The function is uniformly convex γ-spirallike if
- In particular, provides sufficient conditions for functions to be uniformly convex.
and | and | and | |||||||
---|---|---|---|---|---|---|---|---|---|
and | and | and | |||||||
---|---|---|---|---|---|---|---|---|---|
and | and | and | |||||||
---|---|---|---|---|---|---|---|---|---|
- If , then the radius of uniform convexity of the function is the smallest positive root of the equation
- The radius of uniform convexity of the function is the smallest positive root of the equation
- Then the radius of uniform convexity of the function is the smallest positive root of the equation
- The radius of uniformly convex spirallikeness of the function is the smallest positive root of the equation
- The radius of uniformly convex spirallikeness of the function is the smallest positive root of the equation
- The radius of uniformly convex spirallikeness of the function is the smallest positive root of the equation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spacek, L. Contribution á la thèorie des fonctions univalentes. Casop Pest. Mat.-Fys. 1933, 62, 12–19. [Google Scholar]
- Robertson, M.S. Univalent functions f(z) for which zf′(z) is spirallike. Mich. Math. J. 1969, 16, 97–101. [Google Scholar] [CrossRef]
- Pfaltzgraff, J.A. Univalence of the integral of f′(z)λ. Bull. Lond. Math. Soc. 1975, 7, 254–256. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roumaine Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Goodman, A.W. On uniformly convex functions. Ann. Pol. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef]
- Goodman, A.W. On uniformly starlike functions. J. Math. Anal. Appl. 1991, 155, 364–370. [Google Scholar] [CrossRef]
- Ronning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef]
- Ravichandran, V.; Selvaraj, C.; Rajagopal, R. On uniformly convex spiral functions and uniformly spirallike functions. Soochow J. Math. 2003, 29, 393–405. [Google Scholar]
- Baricz, Á.; Kupán, P.A.; Szxaxsz, R. The radius of starlikeness of normalized Bessel functions of the first kind. Proc. Am. Math. Soc. 2014, 142, 2019–2025. [Google Scholar] [CrossRef]
- Deniz, E. Geometric and monotonic properties of Ramanujan type entire functions. Ramanujan J. 2020, 55, 103–130. [Google Scholar] [CrossRef]
- Kazımoğlu, S.; Deniz, E. The radii of starlikeness and convexity of the functions including derivatives of Bessel functions. Turk. J. Math. 2022, 46, 894–911. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-shbeil, I.; Oladejo, S.O.; Cătaş, A. Radius and Differential Subordination Results for Starlikeness Associated with Limaçon Class. J. Funct. Spaces 2022. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Conf Proc Lecture Notes Anal I; Int Press: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
- Gangania, K.; Kumar, S.S. S*(ψ) and C(ψ)-radii for some special functions. Iran. J. Sci. Technol. Trans. A Sci. 2022, 46, 95966. [Google Scholar]
- Gangania, K.K.; Kumar, S.S. Certain Radii problems for S*(ψ) and Special functions. arXiv 2023, arXiv:2007.07816v2. [Google Scholar]
- Oliver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge Univ. Press: Cambridge, UK, 2010. [Google Scholar]
- Mercer, A.C. The zeros of az2Jν″(z)+bzJν′(z)+cJν(z) as functions of order. Internat. J. Math. Math. Sci. 1992, 15, 319–322. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Muldoon, M.E. Bounds for the small real and purely imaginary zeros of Bessel and related functions. Meth. Appl. Anal. 1995, 2, 1–21. [Google Scholar] [CrossRef]
- Baricz, Á.; Çağlar, M.; Deniz, E. Starlikeness of bessel functions and their derivatives. Math. Inequal. Appl. 2016, 19, 439–449. [Google Scholar] [CrossRef]
- Shah, S.M.; Trimble, S.Y. Entire functions with univalent derivatives. J. Math. Anal. Appl. 1971, 33, 220–229. [Google Scholar] [CrossRef]
- Levin, B.Y. Lectures on Entire Functions. Am. Math. Soc. Transl. Math. Monogr. 1996, 150, 248. [Google Scholar]
- Baricz, Á.; Orhan, H.; Szász, R. The radius of α- convexity of normalized Bessel functions of the first kind. Comput. Method. Func. Theo. 2016, 16, 93–103. [Google Scholar] [CrossRef]
- Deniz, E.; Szász, R. The radius of uniform convexity of Bessel functions. J. Math. Anal. Appl. 2017, 453, 572–588. [Google Scholar] [CrossRef]
- Deniz, E.; Kazımoğlu, S.; Çağlar, M. Radii of Starlikeness and Convexity of Bessel Function Derivatives. Ukr. Math. J. 2022, 73, 1686–1711. [Google Scholar] [CrossRef]
- Szász, R. About the radius of starlikeness of Bessel functions of the first kind. Monatshefte Für Math. 2015, 176, 323–330. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aldawish, I. On Subclasses of Uniformly Spirallike Functions Associated with Generalized Bessel Functions. J. Funct. Spaces 2019, 2019, 1329462. [Google Scholar]
- Kazımoğlu, S.; Gangania, K. Radius of γ-Spirallikeness of order α for some Special functions. arXiv 2022, arXiv:2211.13232. [Google Scholar]
- Jensen, J.L.W.V. Recherches sur la théorie des équations. Acta Math. 1913, 36, 181–195. [Google Scholar] [CrossRef]
- Kazımoğlu, S.; Deniz, E. Radius Problems for Functions Containing Derivatives of Bessel Functions. Comput. Method. Func. Theo. 2022, 1–26. [Google Scholar] [CrossRef]
- Baricz, Á.; Szász, R. The radius of convexity of normalized Bessel functions of the first kind. Anal. Appl. 2014, 12, 485–509. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanas, S.; Gangania, K. Radius of Uniformly Convex γ-Spirallikeness of Combination of Derivatives of Bessel Functions. Axioms 2023, 12, 468. https://doi.org/10.3390/axioms12050468
Kanas S, Gangania K. Radius of Uniformly Convex γ-Spirallikeness of Combination of Derivatives of Bessel Functions. Axioms. 2023; 12(5):468. https://doi.org/10.3390/axioms12050468
Chicago/Turabian StyleKanas, Stanislawa, and Kamaljeet Gangania. 2023. "Radius of Uniformly Convex γ-Spirallikeness of Combination of Derivatives of Bessel Functions" Axioms 12, no. 5: 468. https://doi.org/10.3390/axioms12050468
APA StyleKanas, S., & Gangania, K. (2023). Radius of Uniformly Convex γ-Spirallikeness of Combination of Derivatives of Bessel Functions. Axioms, 12(5), 468. https://doi.org/10.3390/axioms12050468