Selection of a Forklift for a Cargo Company with Fuzzy BWM and Fuzzy MCRAT Methods
Abstract
:1. Introduction
- The MHE selection problem is important for businesses. Using the wrong MHE can cause serious costs to companies. In addition, the wrong MHE choice can cause unnecessary free time and unnecessary delays in transportation. Therefore, in this study, a new fuzzy MCDM model is proposed to solve the MHE selection problem.
- The fuzzy BWM method gives more accurate results than the fuzzy AHP method and requires less pairwise comparison. Therefore, in this study, the fuzzy BWM method was used to weight the criteria.
- As mentioned above, the MCRAT method has a simpler process for the evaluation of alternatives with various criteria and it produces reliable, universal, and rational results. However, this method cannot handle uncertainty since it is crisp. Therefore, a fuzzy MCRAT method is developed in this study.
2. Materials and Methods
2.1. Fuzzy BWM
2.2. Fuzzy MCRAT
3. Application
- Purchasing Price (PP);
- Lifting Height (LH);
- Lowering Speed (LS);
- Lifting Speed (LIS);
- Loading Capacity (LOC);
- Movement Area Requirement (MAR);
- Image of the Manufacturer Company (IMC);
- Supply of Spare Parts (SUSP).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kulak, O. A decision support system for fuzzy multi-attribute selection of material handling equipments. Expert Syst. 2005, 29, 310–319. [Google Scholar] [CrossRef]
- Hassan, M.M.D. A framework for selection of material handling equipment in manufacturing and logistics facilities. J. Manuf. Technol. Manag. 2010, 21, 246–268. [Google Scholar]
- Karande, P.; Chakraborty, S. Material handling equipment selection using weighted utility additive theory. J. Ind. Eng. 2013, 2013, 268708. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Chandra, M.; Shahab, F.; Vimal, K.E.K.; Rajak, S. Selection for additive manufacturing using hybrid MCDM technique considering sustainable concepts. Rapid Prototyp. J. 2022, 28, 1297–1311. [Google Scholar] [CrossRef]
- Emovon, I.; Oghenenyerovwho, O.S. Application of MCDM method in material selection for optimal design: A review. Results Mater. 2020, 7, 100115. [Google Scholar] [CrossRef]
- Ecer, F. A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies. Renew. Sustain. Energy Rev. 2021, 143, 110916. [Google Scholar] [CrossRef]
- Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Wang, C.N.; Nguyen, N.A.T.; Dang, T.T. Offshore wind power station (OWPS) site selection using a two-stage MCDM-based spherical fuzzy set approach. Sci. Rep. 2022, 12, 4260. [Google Scholar] [CrossRef]
- Chakraborty, S.; Banik, D. Design of a material handling equipment selection model using analytic hierarchy process. Int. J. Adv. Manuf. Technol. 2006, 28, 1237–1245. [Google Scholar] [CrossRef]
- Onut, S.; Kara, S.S.; Mert, S. Selecting the suitable material handling equipment in the presence of vagueness. Int. J. Adv. Manuf. Technol. 2009, 44, 818–828. [Google Scholar] [CrossRef]
- Chatterjee, P.; Athawale, V.M.; Chakraborty, S. Selection of industrial robots using compromise ranking and outranking methods. Robot. Comput.-Integr. Manuf. 2010, 26, 483–489. [Google Scholar] [CrossRef]
- Tuzkaya, G.; Gülsün, B.; Kahraman, C.; Özgen, D. An integrated fuzzy multi-criteria decision making methodology for material handling equipment selection problem and an application. Expert Syst. Appl. 2010, 37, 2853–2863. [Google Scholar] [CrossRef]
- Maniya, K.D.; Bhatt, M.G. A multi-attribute selection of automated guided vehicle using the AHP/M-GRA technique. Int. J. Prod. Res. 2011, 49, 6107–6124. [Google Scholar] [CrossRef]
- Bairagi, B.; Dey, B.; Sarkar, B. Incremental analysis for the performance evaluation of material handling equipment: A holistic approach. Uncertain Supply Chain Manag. 2013, 1, 77–86. [Google Scholar] [CrossRef]
- Gaurh, K.R.; Khan, I.; Ghosh, M.K. MCDM techniques for the selection of material handling equipment in the automobile industry. Int. J. Mod. Eng. Res. 2014, 4, 46–52. [Google Scholar]
- Khandekar, A.V.; Chakraborty, S. Selection of material handling equipment using fuzzy axiomatic design principles. Informatica 2015, 26, 259–282. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Md Dawal, S.Z.; Nukman, Y.; Achmad, P.R.; Aoyama, H. An integrated MCDM model for conveyor equipment evaluation and selection in an FMC based on a fuzzy AHP and fuzzy ARAS in the presence of vagueness. PLoS ONE 2016, 11, e0153222. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.K.; Sahu, A.K.; Sahu, N.K. Appraisements of material handling system in context of fiscal and environment extent: A comparative grey statistical analysis. Int. J. Logist. Manag. 2017, 28, 2–28. [Google Scholar] [CrossRef]
- Mathew, M.; Sahu, S. Comparison of new multi-criteria decision making methods for material handling equipment selection. Manag. Sci. Lett. 2018, 8, 139–150. [Google Scholar] [CrossRef]
- Hellmann, W.; Marino, D.; Megahed, M.; Suggs, M.; Borowski, J.; Negahban, A. Human, AGV or AIV? An integrated framework for material handling system selection with real-world application in an injection molding facility. Int. J. Adv. Manuf. Technol. 2019, 101, 815–824. [Google Scholar] [CrossRef]
- Goswami, S.S.; Behera, D.K. Solving material handling equipment selection problems in an industry with the help of entropy integrated COPRAS and ARAS MCDM techniques. Process Integr. Optim. Sustain. 2021, 5, 947–973. [Google Scholar] [CrossRef]
- Verma, P.K.; Kumar, R.; Goindi, G.S. Evaluation of material handling using MCDM techniques: A case study. In Advances in Production and Industrial Engineering: Select Proceedings of ICETMIE 2019; Springer: Singapore, 2021; pp. 389–401. [Google Scholar]
- Chakraborty, S.; Saha, A.K. Selection of Forklift unit for transport handling using integrated MCDM under neutrosophic environment. Facta Univ. Ser. Mech. Eng. 2022; Online first. [Google Scholar]
- Chodha, V.; Dubey, R.; Kumar, R.; Singh, S.; Kaur, S. Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Mater. Today Proc. 2022, 50, 709–715. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Görçün, Ö.F.; Küçükönder, H. Evaluation of the Special Warehouse Handling Equipment (Turret Trucks) Using Integrated FUCOM and WASPAS Techniques Based on Intuitionistic Fuzzy Dombi Aggregation Operators. Arab. J. Sci. Eng. 2023; Online first. [Google Scholar]
- Urošević, K.; Gligorić, Z.; Miljanović, I.; Beljić, Č.; Gligorić, M. Novel methods in multiple criteria decision-making process (Mcrat and raps)—Application in the mining industry. Mathematics 2021, 9, 1980. [Google Scholar] [CrossRef]
- Abdulaal, R.; Bafail, O.A. Two New Approaches (RAMS-RATMI) in Multi-Criteria Decision-Making Tactics. J. Math. 2022, 6725318. [Google Scholar] [CrossRef]
- Ulutaş, A.; Balo, F.; Topal, A. Identifying the Most Efficient Natural Fibre for Common Commercial Building Insulation Materials with an Integrated PSI, MEREC, LOPCOW and MCRAT Model. Polymers 2023, 15, 1500. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, H. Fuzzy best-worst multi-criteria decision-making method and its applications. Knowl.-Based Syst. 2017, 121, 23–31. [Google Scholar] [CrossRef]
- Gul, M.; Ak, M.F. Assessment of occupational risks from human health and environmental perspectives: A new integrated approach and its application using fuzzy BWM and fuzzy MAIRCA. Stoch. Environ. Res. Risk Assess. 2020, 34, 1231–1262. [Google Scholar] [CrossRef]
- Khan, S.; Haleem, A.; Khan, M.I. Assessment of risk in the management of Halal supply chain using fuzzy BWM method. Supply Chain Forum Int. J. 2021, 22, 57–73. [Google Scholar] [CrossRef]
- Amiri, M.; Hashemi-Tabatabaei, M.; Ghahremanloo, M.; Keshavarz-Ghorabaee, M.; Zavadskas, E.K.; Banaitis, A. A new fuzzy BWM approach for evaluating and selecting a sustainable supplier in supply chain management. Int. J. Sustain. Dev. World Ecol. 2021, 28, 125–142. [Google Scholar] [CrossRef]
- Gan, J.; Zhong, S.; Liu, S.; Yang, D. Resilient supplier selection based on fuzzy BWM and GMo-RTOPSIS under supply chain environment. Discret. Dyn. Nat. Soc. 2019, 2019, 2456260. [Google Scholar] [CrossRef]
- Gupta, H. Assessing organizations performance on the basis of GHRM practices using BWM and Fuzzy TOPSIS. J. Environ. Manag. 2018, 226, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.; Chen, Z. Evaluation and selection of sustainable hydrogen production technology with hybrid uncertain sustainability indicators based on rough-fuzzy BWM-DEA. Renew. Energy 2021, 165, 716–730. [Google Scholar] [CrossRef]
- Jaukovic Jocic, K.; Jocic, G.; Karabasevic, D.; Popovic, G.; Stanujkic, D.; Zavadskas, E.K.; Thanh Nguyen, P. A novel integrated piprecia–interval-valued triangular fuzzy aras model: E-learning course selection. Symmetry 2020, 12, 928. [Google Scholar] [CrossRef]
- Rostamzadeh, R.; Esmaeili, A.; Sivilevičius, H.; Nobard, H.B.K. A fuzzy decision-making approach for evaluation and selection of third party reverse logistics provider using fuzzy ARAS. Transport 2020, 35, 635–657. [Google Scholar] [CrossRef]
- Karagöz, S.; Deveci, M.; Simic, V.; Aydin, N. Interval type-2 Fuzzy ARAS method for recycling facility location problems. Appl. Soft Comput. 2021, 102, 107107. [Google Scholar] [CrossRef]
- Mavi, R.K. Green supplier selection: A fuzzy AHP and fuzzy ARAS approach. Int. J. Serv. Oper. Manag. 2015, 22, 165–188. [Google Scholar] [CrossRef]
- Bakır, M.; Atalık, Ö. Application of fuzzy AHP and fuzzy MARCOS approach for the evaluation of e-service quality in the airline industry. Decis. Mak. Appl. Manag. Eng. 2021, 4, 127–152. [Google Scholar] [CrossRef]
- Stanković, M.; Stević, Ž.; Das, D.K.; Subotić, M.; Pamučar, D. A new fuzzy MARCOS method for road traffic risk analysis. Mathematics 2020, 8, 457. [Google Scholar] [CrossRef]
- Pamucar, D.; Ecer, F.; Deveci, M. Assessment of alternative fuel vehicles for sustainable road transportation of United States using integrated fuzzy FUCOM and neutrosophic fuzzy MARCOS methodology. Sci. Total Environ. 2021, 788, 147763. [Google Scholar] [CrossRef]
- Lam, W.S.; Lam, W.H.; Jaaman, S.H.; Liew, K.F. Performance evaluation of construction companies using integrated entropy–fuzzy VIKOR model. Entropy 2021, 23, 320. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.N.; Nguyen, N.A.T.; Dang, T.T.; Lu, C.M. A compromised decision-making approach to third-party logistics selection in sustainable supply chain using fuzzy AHP and fuzzy VIKOR methods. Mathematics 2021, 9, 886. [Google Scholar] [CrossRef]
- Poormirzaee, R.; Hosseini, S.; Taghizadeh, R. Smart mining policy: Integrating fuzzy-VIKOR technique and the Z-number concept to implement industry 4.0 strategies in mining engineering. Resour. Policy 2022, 77, 102768. [Google Scholar] [CrossRef]
- Deveci, M.; Gokasar, I.; Pamucar, D.; Zaidan, A.A.; Wen, X.; Gupta, B.B. Evaluation of Cooperative Intelligent Transportation System scenarios for resilience in transportation using type-2 neutrosophic fuzzy VIKOR. Transp. Res. Part A Policy Pract. 2023, 172, 103666. [Google Scholar] [CrossRef]
- Jiang, Z.; Wei, G.; Guo, Y. Picture fuzzy MABAC method based on prospect theory for multiple attribute group decision making and its application to suppliers selection. J. Intell. Fuzzy Syst. 2022, 42, 3405–3415. [Google Scholar] [CrossRef]
- Komatina, N.; Tadić, D.; Aleksić, A.; Jovanović, A.D. The assessment and selection of suppliers using AHP and MABAC with type-2 fuzzy numbers in automotive industry. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2022; Online first. [Google Scholar]
- Tan, J.; Liu, Y.; Senapati, T.; Garg, H.; Rong, Y. An extended MABAC method based on prospect theory with unknown weight information under Fermatean fuzzy environment for risk investment assessment in B&R. J. Ambient Intell. Humaniz. Comput. 2022; Online first. [Google Scholar]
- Salimian, S.; Mousavi, S.M.; Antuchevičienė, J. Evaluation of infrastructure projects by a decision model based on RPR, MABAC, and WASPAS methods with interval-valued intuitionistic fuzzy sets. Int. J. Strateg. Prop. Manag. 2022, 26, 106–118. [Google Scholar] [CrossRef]
- Ecer, F. An extended MAIRCA method using intuitionistic fuzzy sets for coronavirus vaccine selection in the age of COVID-19. Neural Comput. Appl. 2022, 34, 5603–5623. [Google Scholar] [CrossRef]
- García Mestanza, J.; Bakhat, R. A fuzzy ahp-mairca model for overtourism assessment: The case of Malaga province. Sustainability 2021, 13, 6394. [Google Scholar] [CrossRef]
- Ecer, F.; Böyükaslan, A.; Hashemkhani Zolfani, S. Evaluation of cryptocurrencies for investment decisions in the era of Industry 4.0: A borda count-based intuitionistic fuzzy set extensions EDAS-MAIRCA-MARCOS multi-criteria methodology. Axioms 2022, 11, 404. [Google Scholar] [CrossRef]
- Hezam, I.M.; Vedala, N.R.D.; Kumar, B.R.; Mishra, A.R.; Cavallaro, F. Assessment of Biofuel Industry Sustainability Factors Based on the Intuitionistic Fuzzy Symmetry Point of Criterion and Rank-Sum-Based MAIRCA Method. Sustainability 2023, 15, 6749. [Google Scholar] [CrossRef]
- Haq, R.S.U.; Saeed, M.; Mateen, N.; Siddiqui, F.; Ahmed, S. An interval-valued neutrosophic based MAIRCA method for sustainable material selection. Eng. Appl. Artif. Intell. 2023, 123, 106177. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D. Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. J. Clean. Prod. 2020, 266, 121981. [Google Scholar] [CrossRef]
- Mešić, A.; Miškić, S.; Stević, Ž.; Mastilo, Z. Hybrid MCDM solutions for evaluation of the logistics performance index of the Western Balkan countries. Economics 2022, 10, 13–34. [Google Scholar] [CrossRef]
Linguistic Phrases | Fuzzy Numbers | CI |
---|---|---|
Equally Significant (ES) | (1, 1, 1) | 3.00 |
Weakly Significant (WS) | (2/3, 1, 3/2) | 3.80 |
Fairly Significant (FS) | (3/2, 2, 5/2) | 5.29 |
Very Significant (VS) | (5/2, 3, 7/2) | 6.69 |
Absolutely Significant (AS) | (7/2, 4, 9/2) | 8.04 |
Criteria | EXP 1 | EXP 2 | EXP 3 |
---|---|---|---|
PP | (0.15, 0.18, 0.18) | (0.111, 0.128, 0.154) | (0.227, 0.248, 0.248) |
LH | (0.121, 0.152, 0.157) | (0.111, 0.128, 0.154) | (0.091, 0.111, 0.131) |
LOS | (0.121, 0.152, 0.157) | (0.111, 0.121, 0.157) | (0.091, 0.111, 0.131) |
LIS | (0.121, 0.152, 0.157) | (0.111, 0.128, 0.154) | (0.091, 0.111, 0.131) |
LOC | (0.121, 0.152, 0.157) | (0.189, 0.189, 0.228) | (0.091, 0.111, 0.131) |
MAR | (0.065, 0.087, 0.1) | (0.078, 0.078, 0.098) | (0.091, 0.111, 0.131) |
IMC | (0.056, 0.066, 0.068) | (0.075, 0.077, 0.092) | (0.075, 0.090, 0.100) |
SUSP | (0.065, 0.087, 0.1) | (0.111, 0.128, 0.154) | (0.091, 0.111, 0.131) |
CR | 0.043 | 0.084 | 0.035 |
Criteria | EXP 4 | EXP 5 | EXP 6 |
PP | (0.065, 0.079, 0.084) | (0.202, 0.233, 0.233) | (0.065, 0.079, 0.084) |
LH | (0.101, 0.140, 0.157) | (0.078, 0.099, 0.101) | (0.150, 0.181, 0.181) |
LOS | (0.101, 0.140, 0.157) | (0.078, 0.099, 0.101) | (0.101, 0.140, 0.157) |
LIS | (0.101, 0.140, 0.157) | (0.078, 0.099, 0.101) | (0.101, 0.140, 0.157) |
LOC | (0.150, 0.181, 0.181) | (0.078, 0.099, 0.101) | (0.101, 0.140, 0.157) |
MAR | (0.101, 0.140, 0.157) | (0.058, 0.066, 0.067) | (0.101, 0.140, 0.157) |
IMC | (0.056, 0.065, 0.068) | (0.134, 0.166, 0.174) | (0.056, 0.065, 0.068) |
SUSP | (0.101, 0.140, 0.157) | (0.134, 0.166, 0.174) | (0.101, 0.140, 0.157) |
CR | 0.043 | 0.063 | 0.043 |
Criteria | Combined Fuzzy Weights | Combined Crisp Weights |
---|---|---|
PP | (0.137, 0.158, 0.164) | 0.156 |
LH | (0.109, 0.135, 0.147) | 0.133 |
LOS | (0.101, 0.127, 0.143) | 0.125 |
LIS | (0.101, 0.128, 0.143) | 0.126 |
LOC | (0.122, 0.145, 0.159) | 0.144 |
MAR | (0.082, 0.104, 0.118) | 0.103 |
IMC | (0.075, 0.088, 0.095) | 0.087 |
SUSP | (0.101, 0.129, 0.146) | 0.127 |
Alternatives | PP | LH | LOS | LIS |
---|---|---|---|---|
FLT-1 | (4, 5.667, 6) | (5.333, 6.333, 7.333) | (2, 3, 4) | (5.667, 6.667, 7.667) |
FLT-2 | (5, 5.667, 7) | (5.333, 6.333, 7.333) | (3.667, 5, 5.667) | (4, 5, 6) |
FLT-3 | (5.667, 7.333, 7.667) | (6.667, 7.333, 8.667) | (4, 5.667, 6) | (5.667, 6.667, 7.667) |
FLT-4 | (5.667, 7.333, 7.667) | (5.667, 6.667, 7.667) | (4, 5.667, 6) | (5.667, 6.667, 7.667) |
FLT-5 | (5, 6, 7) | (5.667, 6.667, 7.667) | (4, 5.667, 6) | (4, 5, 6) |
FLT-6 | (5, 6, 7) | (5.667, 6.333, 7.667) | (4, 5.667, 6) | (4, 5, 6) |
Alternatives | LOC | MAR | IMC | SUSP |
FLT-1 | (4.333, 5.333, 6.333) | (5.333, 6.333, 7.333) | (5.333, 6, 7.333) | (4.667, 5.667, 6.667) |
FLT-2 | (4.333, 5.333, 6.333) | (6.333, 7.333, 8.333) | (6, 6.667, 8) | (5.667, 6, 7.667) |
FLT-3 | (6, 7, 8) | (6.333, 7.333, 8.333) | (6, 7, 8) | (5, 6, 7) |
FLT-4 | (6, 7, 8) | (6.333, 7.333, 8.333) | (5.333, 6, 7.333) | (4.667, 5.667, 6.667) |
FLT-5 | (4.333, 6, 6.333) | (5.333, 6.333, 7.333) | (5.667, 6, 7.667) | (5, 6, 7) |
FLT-6 | (4.333, 5.667, 6.333) | (5, 5.667, 7) | (5, 5.667, 7) | (5.667, 6.333, 7.667) |
Alternatives | PP | LH | LOS | LIS |
---|---|---|---|---|
FLT-1 | (0.667, 0.706, 1) | (0.615, 0.731, 0.846) | (0.333, 0.5, 0.667) | (0.739, 0.87, 1) |
FLT-2 | (0.571, 0.706, 0.8) | (0.615, 0.731, 0.846) | (0.611, 0.833, 0.945) | (0.522, 0.652, 0.783) |
FLT-3 | (0.522, 0.545, 0.706) | (0.769, 0.846, 1) | (0.667, 0.945, 1) | (0.739, 0.87, 1) |
FLT-4 | (0.522, 0.545, 0.706) | (0.654, 0.769, 0.885) | (0.667, 0.945, 1) | (0.739, 0.87, 1) |
FLT-5 | (0.571, 0.667, 0.8) | (0.654, 0.769, 0.885) | (0.667, 0.945, 1) | (0.522, 0.652, 0.783) |
FLT-6 | (0.571, 0.667, 0.8) | (0.654, 0.731, 0.885) | (0.667, 0.945, 1) | (0.522, 0.652, 0.783) |
Alternatives | LOC | MAR | IMC | SUSP |
FLT-1 | (0.542, 0.667, 0.792) | (0.682, 0.79, 0.938) | (0.667, 0.75, 0.917) | (0.609, 0.739, 0.87) |
FLT-2 | (0.542, 0.667, 0.792) | (0.6, 0.682, 0.79) | (0.75, 0.833, 1) | (0.739, 0.783, 1) |
FLT-3 | (0.75, 0.875, 1) | (0.6, 0.682, 0.79) | (0.75, 0.833, 1) | (0.652, 0.783, 0.913) |
FLT-4 | (0.75, 0.875, 1) | (0.6, 0.682, 0.79) | (0.667, 0.75, 0.917) | (0.609, 0.739, 0.87) |
FLT-5 | (0.542, 0.75, 0.792) | (0.682, 0.79, 0.938) | (0.708, 0.75, 0.958) | (0.652, 0.783, 0.913) |
FLT-6 | (0.542, 0.708, 0.792) | (0.714, 0.882, 1) | (0.625, 0.708, 0.875) | (0.739, 0.826, 1) |
Alternatives | PP | LH | LOS | LIS |
---|---|---|---|---|
FLT-1 | (0.104, 0.11, 0.156) | (0.082, 0.097, 0.113) | (0.042, 0.063, 0.083) | (0.093, 0.11, 0.126) |
FLT-2 | (0.089, 0.11, 0.125) | (0.082, 0.097, 0.113) | (0.076, 0.104, 0.118) | (0.066, 0.082, 0.099) |
FLT-3 | (0.081, 0.085, 0.11) | (0.102, 0.113, 0.133) | (0.083, 0.118, 0.125) | (0.093, 0.11, 0.126) |
FLT-4 | (0.081, 0.085, 0.11) | (0.087, 0.102, 0.118) | (0.083, 0.118, 0.125) | (0.093, 0.11, 0.126) |
FLT-5 | (0.089, 0.104, 0.125) | (0.087, 0.102, 0.118) | (0.083, 0.118, 0.125) | (0.066, 0.082, 0.099) |
FLT-6 | (0.089, 0.104, 0.125) | (0.087, 0.097, 0.118) | (0.083, 0.118, 0.125) | (0.066, 0.082, 0.099) |
Alternatives | LOC | MAR | IMC | SUSP |
FLT-1 | (0.078, 0.096, 0.114) | (0.07, 0.081, 0.097) | (0.058, 0.065, 0.08) | (0.077, 0.094, 0.11) |
FLT-2 | (0.078, 0.096, 0.114) | (0.062, 0.07, 0.081) | (0.065, 0.072, 0.087) | (0.094, 0.099, 0.127) |
FLT-3 | (0.108, 0.126, 0.144) | (0.062, 0.07, 0.081) | (0.065, 0.076, 0.087) | (0.083, 0.099, 0.116) |
FLT-4 | (0.108, 0.126, 0.144) | (0.062, 0.07, 0.081) | (0.058, 0.065, 0.08) | (0.077, 0.094, 0.11) |
FLT-5 | (0.078, 0.108, 0.114) | (0.07, 0.081, 0.097) | (0.062, 0.065, 0.083) | (0.083, 0.099, 0.116) |
FLT-6 | (0.078, 0.102, 0.114) | (0.074, 0.091, 0.103) | (0.054, 0.062, 0.076) | (0.094, 0.105, 0.127) |
Magnitude | |
---|---|
(0.225, 0.267, 0.306) | |
(0.128, 0.143, 0.187) |
Alternatives | ||||
---|---|---|---|---|
FLT-1 | (0.18, 0.219, 0.259) | (0.125, 0.137, 0.184) | (0.0405, 0.0585, 0.0793) | (0.016, 0.0196, 0.0344) |
FLT-2 | (0.19, 0.226, 0.271) | (0.108, 0.13, 0.149) | (0.0428, 0.0603, 0.0829) | (0.0138, 0.0186, 0.0279) |
FLT-3 | (0.221, 0.265, 0.302) | (0.102, 0.11, 0.137) | (0.0497, 0.0708, 0.0924) | (0.0131, 0.0157, 0.0256) |
FLT-4 | (0.21, 0.256, 0.291) | (0.102, 0.11, 0.137) | (0.0473, 0.0684, 0.089) | (0.0131, 0.0157, 0.0256) |
FLT-5 | (0.189, 0.238, 0.27) | (0.113, 0.132, 0.158) | (0.0425, 0.0635, 0.0826) | (0.0145, 0.0189, 0.0295) |
FLT-6 | (0.191, 0.235, 0.272) | (0.116, 0.138, 0.162) | (0.043, 0.0627, 0.0832) | (0.0148, 0.0197, 0.0303) |
Alternatives | Rankings | |||
FLT-1 | (0.0565, 0.0781, 0.1137) | 0.0564 | 5 | |
FLT-2 | (0.0566, 0.0789, 0.1108) | 0.0555 | 6 | |
FLT-3 | (0.0628, 0.0865, 0.118) | 0.0606 | 1 | |
FLT-4 | (0.0604, 0.0841, 0.1146) | 0.0586 | 2 | |
FLT-5 | (0.057, 0.0824, 0.1121) | 0.0567 | 4 | |
FLT-6 | (0.0578, 0.0824, 0.1135) | 0.0573 | 3 |
Alternatives | Fuzzy ARAS | Fuzzy MARCOS | Fuzzy MCRAT | Fuzzy TOPSIS | Fuzzy MABAC | Fuzzy VIKOR | Fuzzy MAIRCA |
---|---|---|---|---|---|---|---|
FLT-1 | 5 | 6 | 5 | 6 | 5 | 6 | 5 |
FLT-2 | 6 | 5 | 6 | 5 | 6 | 5 | 6 |
FLT-3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
FLT-4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
FLT-5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
FLT-6 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulutaş, A.; Topal, A.; Karabasevic, D.; Balo, F. Selection of a Forklift for a Cargo Company with Fuzzy BWM and Fuzzy MCRAT Methods. Axioms 2023, 12, 467. https://doi.org/10.3390/axioms12050467
Ulutaş A, Topal A, Karabasevic D, Balo F. Selection of a Forklift for a Cargo Company with Fuzzy BWM and Fuzzy MCRAT Methods. Axioms. 2023; 12(5):467. https://doi.org/10.3390/axioms12050467
Chicago/Turabian StyleUlutaş, Alptekin, Ayse Topal, Darjan Karabasevic, and Figen Balo. 2023. "Selection of a Forklift for a Cargo Company with Fuzzy BWM and Fuzzy MCRAT Methods" Axioms 12, no. 5: 467. https://doi.org/10.3390/axioms12050467
APA StyleUlutaş, A., Topal, A., Karabasevic, D., & Balo, F. (2023). Selection of a Forklift for a Cargo Company with Fuzzy BWM and Fuzzy MCRAT Methods. Axioms, 12(5), 467. https://doi.org/10.3390/axioms12050467