On the Strong Starlikeness of the Bernardi Transform
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brannan, D.; Kirwan, W. On some classes of bounded univalent functions. J. Lond. Math. Soc. 1969, 2, 431–443. [Google Scholar] [CrossRef]
- Stankiewicz, J. Quelques problèmes extrèmaux dans les classes des fonctions α-angulairement ètoilèes. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1966, 20, 59–75. [Google Scholar]
- Cho, N.E.; Kwon, O.S.; Sim, Y.J. Differential inequalities for spirallike and strongly starlike functions. Adv. Differ. Equ. 2021, 2021, 48. [Google Scholar] [CrossRef]
- Ebadian, A.; Sokół, J. On the subordination and superordination of strongly starlike functions. Math. Slovaca 2016, 66, 815–822. [Google Scholar] [CrossRef]
- Hotta, I.; Nunokawa, M. On strongly starlike and convex functions of order α and type β. Mathematica 2011, 53, 51–56. [Google Scholar]
- Ling, Y.; Liu, F.; Bao, G. Some properties of an integral transform. Appl. Math. Lett. 2006, 19, 830–833. [Google Scholar] [CrossRef]
- Parvatham, R.; Ponnusamy, S.; Sahoo, S. Norm estimates for the Bernardi integral transforms of functions defined by subordination. Hiroshima Math. J. 2008, 38, 19–29. [Google Scholar] [CrossRef]
- Sokół, J.; Nunokawa, M. On the subordination under Bernardi operator. Proc. Jpn. Acad. Ser. A Math. Sci. 2013, 89, 11–14. [Google Scholar] [CrossRef]
- Arif, M.; Raza, M.; Haq, M.U.; Srivastava, G. Relationship of the Bernardi integral operator with certain classes of analytic functions. Miskolc Math. 2020, 21, 575–592. [Google Scholar] [CrossRef]
- Owa, S.; Güney, H. New Applications of the Bernardi Integral Operator. Mathematics 2020, 8, 1180. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Srivastava, H.M.; Arif, M.; Haq, M.; Khan, N.; Khan, B. Majorization Results Based upon the Bernardi Integral Operator. Symmetry 2022, 14, 1404. [Google Scholar] [CrossRef]
- Khan, A.; Haq, M.; Cotîrlă, L.I.; Oros, G.I. Bernardi Integral Operator and Its Application to the Fourth Hankel Determinant. J. Funct. Spaces 2022, 2022, 4227493. [Google Scholar] [CrossRef]
- Arbeláez, H.; Bravo, V.; Hernández, R.; Sierra, W.; Venegas, O. Integral transforms for logharmonic mappings. J. Inequalities Appl. 2021, 2021, 511. [Google Scholar] [CrossRef]
- Kumar, S.; Sahoo, S.K. Preserving properties and pre-Schwarzian norms of nonlinear integral transforms. Acta Math. Hung. 2020, 162, 84–97. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Cetinkaya, A. Survey on the theory of integral and related operators in Geometric Function Theory. In Proceedings of the Mathematical Analysis and Computing, ICMAC, Chennai, India, 23–24 December 2019; Springer Proceedings in Mathematics & Statistics. Springer: Singapore, 2021; Volume 344. [Google Scholar]
- Mocanu, P. On starlikeness of Libera transform. Mathematica 1986, 28, 153–155. [Google Scholar]
- Mocanu, P. New extensions of a theorem of R. Singh S. Singh. Math. 1995, 37, 171–182. [Google Scholar]
- Nunokawa, M.; Sokol, J. On starlikeness of Libera transform. Sains Malays. 2015, 44, 155–158. [Google Scholar] [CrossRef]
- Pascu, N.N. Alpha-close-to-convex functions. Rom.-Finn. Semin. Complex Anal. Buchar. 1976 Proc. Lect. Notes Math. 1979, 743, 331–335. [Google Scholar]
- Cheng, W.T.; Nasiruzzaman, M.; Mohiuddine, S.A. Stancu-type generalized q-Bernstein-Kantorovich operators involving Bezier bases. Mathematics 2022, 10, 2057. [Google Scholar] [CrossRef]
- Nunokawa, M. On the order of strongly starlikeness of strongly convex functions. Proc. Jpn. Acad. Ser. A Math. Sci. 1993, 69, 234–237. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orouji, Z.; Ebadian, A.; Cho, N.E. On the Strong Starlikeness of the Bernardi Transform. Axioms 2023, 12, 91. https://doi.org/10.3390/axioms12010091
Orouji Z, Ebadian A, Cho NE. On the Strong Starlikeness of the Bernardi Transform. Axioms. 2023; 12(1):91. https://doi.org/10.3390/axioms12010091
Chicago/Turabian StyleOrouji, Zahra, Ali Ebadian, and Nak Eun Cho. 2023. "On the Strong Starlikeness of the Bernardi Transform" Axioms 12, no. 1: 91. https://doi.org/10.3390/axioms12010091
APA StyleOrouji, Z., Ebadian, A., & Cho, N. E. (2023). On the Strong Starlikeness of the Bernardi Transform. Axioms, 12(1), 91. https://doi.org/10.3390/axioms12010091