On Star Selection Principles Theory
Abstract
:1. Introduction
2. Star Selection Principles and Hyperspaces
- The hyperspace is SR;
- X satisfies the selection principle .
- The hyperspace is SSR;
- X satisfies the selection principle .
- is SR if and only if X satisfies ;
- is SR if and only if X satisfies ;
- is SR if and only if X satisfies .
- is SSR if and only if X satisfies ;
- is SSR if and only if X satisfies ;
- is SSR if and only if X satisfies .
- The hyperspace is SM;
- X satisfies the selection principle .
- The hyperspace is SSM;
- X satisfies the selection principle .
- is SM if and only if X satisfies ;
- is SM if and only if X satisfies ;
- is SM if and only if X satisfies .
- is SSM if and only if X satisfies ;
- is SSM if and only if X satisfies ;
- is SSM if and only if X satisfies .
- is SSM;
- is SSR.
- is SSR;
- X satisfies .
- is SSR if and only if X is star-K-Menger;
- is SSR if and only if X is SSM.
- is SSM;
- is SSR;
- X is star-K-Menger.
- is SSM;
- is SSR;
- X is SSM.
- is SR;
- X satisfies .
- is SSR;
- X satisfies .
3. Selective Version of the acc and (a) Properties
- If a space X of cardinality less than is aSSL, then it is M-acc;
- If a space X of cardinality less than is aSSL, then it is H-acc;
- If a space X of cardinality less than is aSSL, then it is R-acc-space.
- If , then X is selectively (a) if and only if X is M-acc;
- If , then X is selectively (a) if and only if X is H-acc;
- If , then X is selectively (a) if and only if X R-acc.
4. Set Star Selection Properties
- (1)
- -star Menger (respectively, weakly -star Menger, almost -star Menger, faintly -star Menger) if for each and each sequence of covers of by sets open in X, there is a sequence such that is a finite subset of for each , and (respectively, , , );
- (2)
- -strongly star Menger (respectively, weakly -strongly star Menger, almost -strongly star Menger) if, for each and each sequence of covers of by sets open in X, there is a sequence of finite subsets of such that (respectively, , ).
- (3)
- -star Rothberger (respectively, weakly -star Rothberger, almost -star Rothberger, faintly -star Rothberger) if, for each and each sequence of collections of sets open in X such that , there is a sequence such that for each and (respectively, , , );
- (4)
- -strongly star Rothberger (respectively, weakly -strongly star Rothberger, almost -strongly star Rothberger) if, for each and each sequence of collections of sets open in X such that , there is a sequence of elements of such that (respectively, , );
- (5)
- -star Hurewicz (respectively, almost -star Hurewicz, faintly -star Hurewicz) if, for each and each sequence of collections of sets open in X such that , there is a sequence such that is a finite subset of for each and each belongs to all but finitely many sets (respectively, to all but finitely many sets to all but finitely many );
- (6)
- -strongly star Hurewicz (respectively, almost -strongly star Hurewicz) if, for each and each sequence of collections of sets open in X such that , there is a sequence of finite subsets of such that each belongs to all but finitely many sets (respectively, to all but finitely many sets ).
- X is Menger;
- X is set strongly star-Menger;
- X is strongly star-Menger;
- X is set star-Menger;
- X is star-Menger.
5. Directions of Further Investigation
5.1. Related to the Classical Star Selection Principles
- is called p-star-Menger ;
- is called p-strongly star Menger ;
- is called p-ω-star-Menger ;
- is called p-ω-strongly star Menger ;
- is called p-star-Hurewicz ;
- is called p-strongly star Hurewicz .
5.2. Related to Section 3
- Weakly M-acc (shortly, wM-acc) (respectively, almost M-acc (shortly, aM-acc)) if, for each sequence of open covers of X and each sequence of dense subsets of X, there are finite sets , , such that (respectively, ).
- Weakly R-acc (shortly, wR-acc) (respectively, almost R-acc (shortly, aR-acc)) if, for each sequence of open covers of X and each sequence of dense subsets of X, there are , such that (respectively, ).
- almost H-acc (shortly, aH-acc) if, for each sequence of open covers of X and each sequence of dense subsets of X, there are finite sets , such that each belongs to for all but finitely many n.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engelking, R. General Topology; Heldermann Verlag: Berlin, Germany, 1989. [Google Scholar]
- van Douwen, E.K.; Reed, G.M.; Roscoe, A.W.; Tree, I.J. Star covering properties. Topol. Appl. 1991, 39, 71–103. [Google Scholar] [CrossRef] [Green Version]
- Matveev, M.V. A survey on star covering properties. Topol. Atlas 1998, 330, 80–85. [Google Scholar]
- Kočinac, L.D.R. Star-Menger and related spaces. Publ. Math. Debr. 1999, 55, 421–431. [Google Scholar] [CrossRef]
- Kočinac, L.D.R. Star-Menger and related spaces II. Filomat 1999, 13, 129–140. [Google Scholar]
- Kočinac, L.D.R. Some covering properties in topological and uniform spaces. Proc. Steklov Inst. Math. 2006, 252, 122–137. [Google Scholar] [CrossRef]
- Kočinac, L.D.R. Star selection principles: A survey. Khayyam J. Math. 2015, 1, 82–106. [Google Scholar]
- Kočinac, L.D.R. Selection principles in uniform spaces. Note Mat. 2003, 22, 127–139. [Google Scholar]
- Babinkostova, L.; Kočinac, L.D.R.; Scheepers, M. Combinatorics of open covers (XI): Menger- and Rothberger-bounded groups. Topol. Appl. 2007, 154, 1269–1280. [Google Scholar] [CrossRef] [Green Version]
- Kočinac, L.D.R. Some remarks on topologized groups. Filomat 2016, 30, 823–830. [Google Scholar] [CrossRef]
- Kočinac, L.D.R. Variations of classical selection principles: An overview. Quaest. Math. 2020, 37, 1121–1153. [Google Scholar] [CrossRef]
- Bal, P. Some Topological Properties with Selection Principles and Star Covering. Ph.D. Dissertation, Tripura University, Agartala, India, 2016. [Google Scholar]
- Bharwaj, M. Certain Variants of Hurewicz Property. Ph.D. Dissertation, University of Delhi, Delhi, India, 2020. [Google Scholar]
- Casas-de la Rosa, J. Star and Selective Star Properties (Propiedades Estrella y Estrella Selectivas). Ph.D. Dissertation, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico, 2018. [Google Scholar]
- Cuzzupe, M.V. Some Selective and Monotone Versions of Covering Properties and Some Results on the Cardinality of a Topological Space. Ph.D. Dissertation, University of Catania, Catania, Italy, 2017. [Google Scholar]
- Garcia-Balan, S.A. Results on Star Selection Principles and Weakenings of Normality in Ψ-Spaces. Ph.D. Dissertation, York University Toronto, Toronto, ON, Canada, 2020. [Google Scholar]
- Kocev, D. Some Selection Properties of Topological Spaces and Their Generalizations. Ph.D. Dissertation, University of Niš, Niš, Serbia, 2012. (In Serbian). [Google Scholar]
- Lakehal, R. Some Star Selection Principles and Applications. Ph.D. Dissertation, University Mhamed Bougara of Boumerdes, Boumerdes, Algeria, 2021. [Google Scholar]
- Singh, S. Variants of Hurewicz and Menger Covering Properties in Topological Spaces. Ph.D. Dissertation, University of Delhi, Delhi, India, 2020. [Google Scholar]
- Bal, P.; Bhowmik, S. Some new star selection principles in topology. Filomat 2017, 31, 4041–4050. [Google Scholar] [CrossRef]
- Bal, P.; Bhowmik, S. On R-star Lindelöf spaces. Palest. J. Math. 2017, 6, 480–486. [Google Scholar]
- Bal, P.; Bhowmik, S. Star-selection principles: Another new direction. J. Indian Math. Soc. 2017, 84, 1–6. [Google Scholar] [CrossRef]
- Bal, P.; Kočinac, L.D.R. On selectively star-ccc spaces. Topol. Appl. 2020, 281, 107184. [Google Scholar] [CrossRef]
- Bhardwaj, M. Star versions of Menger basis covering property and Menger measure zero spaces. Publ. Math. Debr. 2021, 99, 299–316. [Google Scholar] [CrossRef]
- Bonanzinga, M.; Cammaroto, F.; Kočinac, L.D.R.; Matveev, M.V. On weaker forms of Menger, Rothberger and Hurewicz properties. Mat. Vesnik 2009, 61, 13–23. [Google Scholar]
- Casas-de la Rosa, J.; Garcia-Balan, S.A.; Szeptycki, P.J. Some star and strongly star selection principles. Topol. Appl. 2019, 258, 572–587. [Google Scholar] [CrossRef]
- Chandra, D.; Alam, N. On localization of the star-Menger selection principle. Hacet. J. Math. Stat. 2021, 50, 1155–1168. [Google Scholar]
- Chandra, D.; Alam, N. Some remarks on star-Menger spaces using box products. Filomat 2022, 36, 1769–1774. [Google Scholar] [CrossRef]
- Cruz-Castillo, R.; Ramírez-Páramo, A.; Tenorio, J.F. Star and strong star-type versions of Rothberger and Menger principles for hit-and-miss topology. Topol. Appl. 2021, 300, 107758. [Google Scholar] [CrossRef]
- Cruz-Castillo, R.; Ramírez-Páramo, A.; Tenorio, J.F. Hurewicz and Hurewicz-type star selection principles for hit-and-miss topology. Filomat 2023, in press. [Google Scholar]
- Kočinac, L.D.R.; Singh, S. On set selectively star ccc-spaces. J. Math. 2020, 2020, 9274503. [Google Scholar] [CrossRef]
- Lakehal, R.; Kočinac, L.D.R.; Seba, D. Almost and weakly NSR, NSM and NSH spaces. Khayyam J. Math. 2021, 7, 40–51. [Google Scholar]
- Lakehal, R.; Kočinac, L.D.R.; Seba, D. Neighbourhood star selection properties in bitopological spaces. Filomat 2021, 35, 339–351. [Google Scholar] [CrossRef]
- Ramírez-Páramo, A.; Romero-Morales, A. Rothberger/Lindelöf-type star selection principles for hit-and-miss topology. Houston J. Math. 2022, in press. [Google Scholar]
- Passos, M.D.; Santana, H.I.; da Silva, S.G. On star covering properties related to countable compactness and pseudocompactness. Comment. Math. Univ. Carol. 2017, 58, 371–382. [Google Scholar]
- Singh, S. The Alexandroff duplicate of star versions of Menger and Hurewicz property. Quest. Answ. Gen. Topol. 2021, 39, 141–149. [Google Scholar]
- Singh, S. Further results on new star-selection principles. Topol. Appl. 2021, 300, 107762. [Google Scholar] [CrossRef]
- Singh, S.; Chauhan, H.V.S.; Kumar, V. On star-K-I-Hurewicz property. Tatra Mt. Math. Publ. 2021, 78, 157–166. [Google Scholar] [CrossRef]
- Song, Y.-K. Remarks on strongly star-Hurewicz spaces. Filomat 2013, 27, 1127–1131. [Google Scholar] [CrossRef]
- Song, Y.-K. Remarks on star-Hurewicz spaces. Bull. Polish Acad. Sci. Math. 2013, 61, 247–255. [Google Scholar] [CrossRef]
- Song, Y.-K.; Xuan, W.-F. A note on selectively star-ccc spaces. Topol. Appl. 2019, 263, 343–349. [Google Scholar] [CrossRef]
- Kumar, G.; Tyagi, B.K. Weakly strongly star-Menger spaces. Cubo Math. J. 2021, 23, 287–298. [Google Scholar] [CrossRef]
- Xuan, W.-F.; Song, Y.-K. A study of selectively star-ccc spaces. Topol. Appl. 2020, 273, 107103. [Google Scholar] [CrossRef]
- Xuan, W.-F.; Song, Y.-K. Notes on selectively 2-star-ccc spaces. RACSAM Ser. Mat. 2020, 114, 155. [Google Scholar] [CrossRef]
- Sakai, M.; Scheepers, M. The combinatorics of open covers. In Recent Progress in General Topology III; Hart, K.P., van Mill, J., Simon, P., Eds.; Atlantis Press Paris: Paris, France, 2014; pp. 751–800. [Google Scholar]
- Di Maio, G.; Kočinac, L.D.R.; Meccariello, E. Applications of k-covers. Acta Math. Sin. Ser. 2006, 22, 1151–1160. [Google Scholar] [CrossRef]
- Kočinac, L.D.R. γ-sets, γk-sets and hyperspaces. Math. Balk. 2005, 19, 109–118. [Google Scholar]
- Caruvana, C.; Holshouser, J. Translation results for some star-selection games. Comment. Math. Univ. Caril. 2022; submitted. [Google Scholar]
- Michael, E. Topologies on spaces of subsets. Trans. Am. Math. Soc. 1951, 71, 152–182. [Google Scholar] [CrossRef]
- Poppe, H. Eine Bemerkung über Trennungsaxiome in Raumen von abgeschlossenen Teilmengen topologisher Raume. Arch. Math. 1965, 16, 197–198. [Google Scholar] [CrossRef]
- Kočinac, L.D.R. The Reznichenko property and the Pytkeev property in hyperspaces. Acta Math. Hungar. 2005, 107, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Fell, J. A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff spaces. Proc. Am. Math. Soc. 1962, 13, 472–476. [Google Scholar] [CrossRef]
- Daniels, P. Pixley-Roy spaces over subsets of the reals. Topol. Appl. 1988, 29, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Kočinac, L.D.R. The Pixley-Roy topology and selection principles. Quest. Answ. Gen. Topol. 2001, 19, 219–225. [Google Scholar]
- Li, Z. Remarks on R-separability of Pixley-Roy hyperspaces. Filomat 2022, 36, 881–886. [Google Scholar] [CrossRef]
- Li, Z. The weakly Rothberger property of Pixley-Roy hyperspaces. Filomat 2022, 36, 5493–5501. [Google Scholar]
- Sakai, M. The weak Hurewicz property of Pixley-Roy hyperspaces. Topol. Appl. 2013, 160, 2531–2537. [Google Scholar] [CrossRef]
- Li, Z. The Hurewicz separability of Pixley-Roy hyperspaces. Topol. Appl. 2022, 324, 108355. [Google Scholar] [CrossRef]
- Li, Z. The quasi-Rothberger property of Pixley-Roy hyperspaces. Filomat 2023, in press. [Google Scholar]
- Sakai, M. Star covering versions of the Menger property. Topol. Appl. 2014, 176, 22–34. [Google Scholar] [CrossRef]
- Scheepers, M. Combinatorics of open covers (V): Pixley-Roy spaces of sets of real, and ω-covers. Topol. Appl. 2000, 102, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Di Maio, G.; Kočinac, L.D.R. Some covering properties of hyperspaces. Topol. Appl. 2008, 155, 1959–1969. [Google Scholar] [CrossRef] [Green Version]
- Di Maio, G.; Kočinac, L.D.R.; Meccariello, E. Selection principles and hyperspace topologies. Topol. Appl. 2005, 153, 912–923. [Google Scholar] [CrossRef] [Green Version]
- Di Maio, G.; Kočinac, L.D.R.; Nogura, T. Convergence properties of hyperspaces. J. Korean Math. Soc. 2007, 44, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Li, Z. Selection principles of the Fell topology and the Vietoris topolog. Topol. Appl. 2016, 212, 90–104. [Google Scholar] [CrossRef]
- Casas-de la Rosa, J.; Martínez-Ruiz, I.; Ramírez-Páramo, A. Star versions of the Rothberger property on hyperspaces. Topol. Appl. 2020, 283, 107396. [Google Scholar] [CrossRef]
- Kočinac, L.D.R.; Sen, R. On the Reznichenko and Pytkeev properties in hyperspaces. Topol. Appl. 2022, in press. [Google Scholar]
- Casas-de la Rosa, J.; Martínez-Ruiz, I.; Ramírez-Páramo, A. Star versions of the Menger property on hyperspaces. Houst. J. Math. 2022, in press. [Google Scholar]
- Song, Y.-K. On star-K-Menger spaces. Hacet. J. Math. Stat. 2014, 43, 769–776. [Google Scholar]
- Diaz-Reyes, J.; Ramirez-Paramo, A.; Tenorio, J.F. Rothberger and Rothberger-type star selection principles on hyperspaces. Topol. Appl. 2021, 287, 107448. [Google Scholar] [CrossRef]
- Cruz-Castillo, R.; Ramirez-Paramo, A.; Tenorio, J.F. Menger and Menger-type star selection principles for hit-and-miss topology. Topol. Appl. 2021, 290, 107574. [Google Scholar] [CrossRef]
- Sen, R.; Ramírez-Páramo, A. cΔ(Λ)-covers and Δγ-set. Topol. Appl. 2022, 307, 107940. [Google Scholar] [CrossRef]
- Caruvana, C.; Holshouser, J. Selection games on hyperspaces. Topol. Appl. 2021, 300, 107771. [Google Scholar] [CrossRef]
- Caruvana, C.; Holshouser, J. Selection games and the Vietoris space. Topol. Appl. 2022, 307, 107772. [Google Scholar] [CrossRef]
- Casas-de la Rosa, J. Relationships between some selection principles and star selection principles. Topol. Appl. 2022, 312, 108077. [Google Scholar] [CrossRef]
- Matveev, M.V. Absolutely countably compact spaces. Topol. Appl. 1994, 58, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Matveev, M.V. Some questions on property (a). Quest. Answ. Gen. Topol. 1997, 15, 103–111. [Google Scholar]
- Caserta, A.; Di Maio, G.; Kočinac, L.D.R. Versions of the properties (a) and (pp). Topol. Appl. 2011, 158, 1360–1368. [Google Scholar] [CrossRef] [Green Version]
- Bonanzinga, M.; Cuzzupé, M.V.; Sakai, M. On selective absolute star-Lindelöfness. Topol. Appl. 2017, 221, 517–523. [Google Scholar] [CrossRef]
- Bonanzinga, M.; Maesano, F. Selectively strongly star-Menger spaces and related properties. Atti Accad. Peloritana Pericolanti-Classe Sci. Fis. Mat. Naturali 2021, 99, A2-1–A2-11. [Google Scholar]
- Bonanzinga, M.; Maesano, F. Some properties defined by relative versions of star-covering properties. Topol. Appl. 2022, 306, 107923. [Google Scholar] [CrossRef]
- Casas-de la Rosa, J.; Garcia-Balan, S.A. Variations of star selection principles on small spaces. Filomat 2022, 36, 4903–4917. [Google Scholar]
- Casas-de la Rosa, J.; Garcia-Balan, S.A. On H-star Lindelöf spaces. 2021; preprint. [Google Scholar]
- Kočinac, L.D.R.; Özçağ, S. Selective versions of acc and (a) spaces. 2021; preprint. [Google Scholar]
- Kočinac, L.D.R.; Özçağ, S. Selective versions of acc and (a) spaces and the Alexandroff duplicate. AIP Conf. Proc. 2022, 2483, 020006. [Google Scholar] [CrossRef]
- Bhowmik, S. Selectively star-Lindelöf spaces. In Proceedings of the 26th Summer Conference on Topology and its Applications, New York, NY, USA, 26–29 July 2011. [Google Scholar]
- Bhowmik, S.; Bal, P.; Gauld, D. On selectively star-Lindelöf properties. J. Indian Math. Soc. 2018, 85, 291–304. [Google Scholar]
- Arhangel’skii, A.V. Relative topological properties and relative topological spaces. Topol. Appl. 1996, 70, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Arhangel’skii, A.V. A generic theorem in the theory of cardinal invariants of topological spaces. Comment. Math. Univ. Carol. 1995, 36, 303–325. [Google Scholar]
- Kočinac, L.D.R.; Konca, Ş. Set-Menger and related properties. Topol. Appl. 2020, 275, 106996. [Google Scholar] [CrossRef]
- Kočinac, L.D.R.; Konca, Ş.; Singh, S. Variations of some star selection properties. AIP Conf. Proc. 2021, 2334, 020006. [Google Scholar]
- Kočinac, L.D.R.; Konca, Ş.; Singh, S. Set star-Menger and set strongly star-Menger spaces. Math. Slovaca 2022, 72, 185–196. [Google Scholar] [CrossRef]
- Konca, Ş.; Kočinac, L.D.R. Set-star Menger and related spaces. In Proceedings of the Abstract Book VI ICRAPAM 2019, Istanbul, Turkey, 12–15 June 2019; p. 49. [Google Scholar]
- Song, Y.-K.; Xuan, W.-F. Remarks on set selectively star-ccc spaces. Topol. Appl. 2022, 315, 108156. [Google Scholar] [CrossRef]
- Singh, S.; Kočinac, L.D.R. Star versions of Hurewicz spaces. Hacet. J. Math. Stat. 2021, 50, 1325–1333. [Google Scholar] [CrossRef]
- Singh, S. Set-starcompact and related spaces. Afrika Mat. 2021, 32, 1389–1397. [Google Scholar] [CrossRef]
- Singh, S. On set-star-K-Hurewicz spaces. Bull. Belg. Math. Soc. Simon Stevin 2022, 28, 361–372. [Google Scholar]
- Singh, S. On set-star-K-Menger spaces. Publ. Math. Debr. 2022, 100, 87–100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kočinac, L.D.R. On Star Selection Principles Theory. Axioms 2023, 12, 93. https://doi.org/10.3390/axioms12010093
Kočinac LDR. On Star Selection Principles Theory. Axioms. 2023; 12(1):93. https://doi.org/10.3390/axioms12010093
Chicago/Turabian StyleKočinac, Ljubiša D. R. 2023. "On Star Selection Principles Theory" Axioms 12, no. 1: 93. https://doi.org/10.3390/axioms12010093
APA StyleKočinac, L. D. R. (2023). On Star Selection Principles Theory. Axioms, 12(1), 93. https://doi.org/10.3390/axioms12010093