Extension of Fuzzy ELECTRE I for Evaluating Demand Forecasting Methods in Sustainable Manufacturing
Abstract
:1. Introduction
2. Literature Review
2.1. Sustainable Manufacturing
2.2. Demand Forecasting Method Selection
2.3. Fuzzy ELECTRE Method
3. Fuzzy Set Theory
3.1. Fuzzy Sets
3.2. Triangular Fuzzy Numbers
3.3. Arithmetic Operations on Fuzzy Numbers
3.4. Ranking Fuzzy Numbers by Signed Distance
3.5. Linguistic Values
4. Model Establishment
- Step 1. Develop a decision matrix
- Step 2. Normalization of values under quantitative criteria
- Step 3. Determine the criteria weights
- Step 4. Weighted normalization matrix
- Step 5. Defuzzification
- Step 6. Identify the concordance and discordance sets
- Step 7. Produce concordance and discordance matrices
- Step 8. An extended modified discordance matrix
- Step 9. Closeness coefficient for ranking alternatives
4.1. Comparison with Similar Methods
5. Numerical Example
5.1. Numerical Comparison
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haapala, K.R.; Zhao, F.; Camelio, J.; Sutherland, J.W.; Skerlos, S.J.; Dornfeld, D.A.; Jawahir, I.S.; Clarens, A.F.; Rickli, J.L. A review of engineering research in sustainable manufacturing. J. Manuf. Sci. Eng. 2013, 135, 041013. [Google Scholar] [CrossRef]
- Dornfeld, D.A. Moving towards green and sustainable manufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 63–66. [Google Scholar] [CrossRef]
- Abdul Rashid, S.H.; Evans, S.; Longhurst, P. A comparison of four sustainable manufacturing strategies. Int. J. Sustain. Eng. 2008, 1, 214–229. [Google Scholar] [CrossRef]
- Pilinkienė, V. Selection of market demand forecast methods: Criteria and application. Eng. Econ. 2008, 3, 19–25. [Google Scholar]
- Choudhury, D.K. Market demand forecast method selection and application: A case study in Hero MotoCorp Ltd. IUP J. Oper. Manag. 2018, 17, 7–22. [Google Scholar]
- Dweiri, F.; Khan, S.A.; Jain, V. Production planning forecasting method selection in a supply chain: A case study. Int. J. Appl. Manag. Sci. 2015, 7, 38–58. [Google Scholar] [CrossRef]
- Dahooie, J.H.; Zavadskas, E.K.; Firoozfar, H.R.; Vanaki, A.S.; Mohammadi, N.; Brauers, W.K.M. An improved fuzzy MULTIMOORA approach for multi-criteria decision making based on objective weighting method (CCSD) and its application to technological forecasting method selection. Eng. Appl. Artif. Intell. 2019, 79, 114–128. [Google Scholar] [CrossRef]
- Roy, B. Classement et choix en présence de points de vue multiples. Rev. Fr. D’inform. Rech. Opér. 1968, 2, 57–75. [Google Scholar] [CrossRef]
- Singh, D.K.; Kaushik, P. Intrusion response prioritization based on fuzzy ELECTRE multiple criteria decision making technique. J. Inf. Secur. Appl. 2019, 48, 102359. [Google Scholar] [CrossRef]
- Akram, M.; Waseem, N.; Liu, P. Novel approach in decision making with m–Polar fuzzy ELECTRE-I. Int. J. Fuzzy Syst. 2019, 21, 1117–1129. [Google Scholar] [CrossRef]
- Zandi, A.; Roghanian, E. Extension of fuzzy ELECTRE based on VIKOR method. Comput. Ind. Eng. 2013, 66, 258–263. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Tavana, M. An extension of the ELECTRE I method for group decision-making under a fuzzy environment. Omega 2011, 39, 373–386. [Google Scholar] [CrossRef]
- Shojaie, A.A.; Babaie, S.; Sayah, E.; Mohammaditabar, D. Analysis and prioritization of green health suppliers using Fuzzy ELECTRE method with a case study. Glob. J. Flex. Syst. Manag. 2018, 19, 39–52. [Google Scholar] [CrossRef]
- Akram, M.; Arshad, M. Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis. Comput. Appl. Math. 2020, 39, 1–21. [Google Scholar] [CrossRef]
- Massami, E.P.; Manyasi, M.M. Analysis of determinants of work performance for seafarers based on fuzzy Electre model. J. Shipp. Trade 2021, 6, 1–20. [Google Scholar] [CrossRef]
- Yao, J.S.; Wu, K. Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets Syst. 2000, 116, 275–288. [Google Scholar] [CrossRef]
- Seliger, G.; Kim, H.J.; Kernbaum, S.; Zettl, M. Approaches to sustainable manufacturing. Int. J. Sustain. Manuf. 2008, 1, 58–77. [Google Scholar] [CrossRef]
- Garetti, M.; Taisch, M. Sustainable manufacturing: Trends and research challenges. Prod. Plan. Control 2012, 23, 83–104. [Google Scholar] [CrossRef]
- Rosen, M.A.; Kishawy, H.A. Sustainable manufacturing and design: Concepts, practices and needs. Sustainability 2012, 4, 154–174. [Google Scholar] [CrossRef]
- Hart, M.; Taraba, P.; Konečný, J. Sustainable purchasing systems based on demand forecasting-Supply chain sustainable growth a challenge nowadays. In Carpathian Logistics Congress (CLC’2016); TANGER Ltd.: Zakopane, Poland, 2017. [Google Scholar]
- Rivera-Castro, R.; Nazarov, I.; Xiang, Y.; Pletneev, A.; Maksimov, I.; Burnaev, E. Demand forecasting techniques for build-to-order lean manufacturing supply chains. In International Symposium on Neural Networks; Springer: Cham, Switzerland, 2019; pp. 213–222. [Google Scholar]
- Acar, Y.; Gardner, E.S., Jr. Forecasting method selection in a global supply chain. Int. J. Forecast. 2012, 28, 842–848. [Google Scholar] [CrossRef]
- Intepe, G.; Bozdag, E.; Koc, T. The selection of technology forecasting method using a multi-criteria interval-valued intuitionistic fuzzy group decision making approach. Comput. Ind. Eng. 2013, 65, 277–285. [Google Scholar] [CrossRef]
- Taghiyeh, S.; Lengacher, D.C.; Handfield, R.B. Forecasting model selection using intermediate classification: Application to MonarchFx corporation. Expert Syst. Appl. 2020, 151, 113371. [Google Scholar] [CrossRef]
- Meira, E.; Oliveira, F.L.C.; Jeon, J. Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals. Int. J. Forecast. 2021, 37, 547–568. [Google Scholar] [CrossRef]
- Hanifi, S.; Liu, X.; Lin, Z.; Lotfian, S. A critical review of wind power forecasting methods—Past, present and future. Energies 2020, 13, 3764. [Google Scholar] [CrossRef]
- Kuznietsova, N.; Bidyuk, P.; Kulinich, A. Data mining methods for evaluation and forecasting the mobile internet traffic in roaming. In CMIS; Zaporizhzhis Polytechnic: Zaporizhzhis, Ukraine, 2021; pp. 73–86. [Google Scholar]
- Roy, B.; Bouyssou, D. Aide Multicritère à la Décision: Méthodes et Cas; Economica: Paris, France, 1993. [Google Scholar]
- Tolga, A.C. A real options approach for software development projects using fuzzy ELECTRE. J. Mult.-Valued Log. Soft Comput. 2012, 18, 541–560. [Google Scholar]
- Çalı, S.; Balaman, Ş.Y. A novel outranking based multi criteria group decision making methodology integrating ELECTRE and VIKOR under intuitionistic fuzzy environment. Expert Syst. Appl. 2019, 119, 36–50. [Google Scholar] [CrossRef]
- Adeel, A.; Akram, M.; Ahmed, I.; Nazar, K. Novel m—Polar fuzzy linguistic ELECTRE-I method for group decision-making. Symmetry 2019, 11, 471. [Google Scholar] [CrossRef]
- Govindan, K.; Jepsen, M.B. ELECTRE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2016, 250, 1–29. [Google Scholar] [CrossRef]
- Basilio, M.P.; Brum, G.S.; Pereira, V. A model of policing strategy choice: The integration of the Latent Dirichlet Allocation (LDA) method with ELECTRE I. J. Model. Manag. 2020, 15, 849–891. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Belbag, S.; Gungordu, A.; Yumusak, T.; Yilmaz, K.G. The evaluation of smartphone brand choice: An application with the fuzzy ELECTRE I method. Int. J. Bus. Manag. Invent. 2016, 5, 55–63. [Google Scholar]
- Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. Selecting sustainability indicators for small to medium sized urban water systems using Fuzzy-ELECTRE. Water Environ. Res. 2017, 89, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Ilyas, F.; Garg, H. Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information. Soft Comput. 2020, 24, 3425–3453. [Google Scholar] [CrossRef]
- Ayyildiz, E.; Gumus, A.T.; Erkan, M. Individual credit ranking by an integrated interval type-2 trapezoidal fuzzy ELECTRE methodology. Soft Comput. 2020, 24, 16149–16163. [Google Scholar] [CrossRef]
- Chen, T.-Y. New Chebyshev distance measures for Pythagorean fuzzy sets with applications to multiple criteria decision analysis using an extended ELECTRE approach. Expert Syst. Appl. 2020, 147, 113164. [Google Scholar] [CrossRef]
- Wang, J.C.; Chen, T.Y. A T-spherical fuzzy ELECTRE approach for multiple criteria assessment problem from a comparative perspective of score functions. J. Intell. Fuzzy Syst. 2021, 41, 3751–3770. [Google Scholar] [CrossRef]
- Badi, I.; Stević, Ž.; Bouraima, M.B. Evaluating free zone industrial plant proposals using a combined full consistency method-Grey-CoCoSo Model. J. Ind. Intell. 2023, 1, 101–109. [Google Scholar] [CrossRef]
- Martin, N.; Edalatpanah, S.A. Application of extended fuzzy ISOCOV methodology in nanomaterial selection based on performance measures. J. Oper. Strateg. Anal. 2023, 1, 55–61. [Google Scholar] [CrossRef]
- Puška, A.; Stojanović, I. Fuzzy multi-criteria analyses on green supplier selection in an agri-food company. J. Intell. Manag. Decis. 2022, 1, 2–16. [Google Scholar] [CrossRef]
- Su, J.; Xu, B.; Li, L.; Wang, D.; Zhang, F. A green supply chain member selection method considering green innovation capability in a hesitant fuzzy environment. Axioms 2023, 12, 188. [Google Scholar] [CrossRef]
- Peddi, P. Defuzzification method for ranking fuzzy numbers based on centroids and maximizing and minimizing set. Decis. Sci. Lett. 2019, 8, 411–428. [Google Scholar] [CrossRef]
- Kataria, N. A comparative study of the defuzzification methods in an application. IUP J. Comput. Sci. 2010, 4, 48–54. [Google Scholar]
- Kumar, H. Some recent defuzzification methods. In Theoretical and Practical Advancements for Fuzzy System Integration; IGI Global: Hershey, PA, USA, 2017; pp. 31–48. [Google Scholar]
- Talon, A.; Curt, C. Selection of appropriate defuzzification methods: Application to the assessment of dam performance. Expert Syst. Appl. 2017, 70, 160–174. [Google Scholar] [CrossRef]
- Arman, H.; Hadi-Vencheh, A.; Arman, A.; Moslehi, A. Revisiting the approximated weight extraction methods in fuzzy analytic hierarchy process. Int. J. Intell. Syst. 2021, 36, 1644–1667. [Google Scholar] [CrossRef]
- Menïz, B. An advanced TOPSIS method with new fuzzy metric based on interval type-2 fuzzy sets. Expert Syst. Appl. 2021, 186, 115770. [Google Scholar] [CrossRef]
- Zhang, P.; Yao, H.; Qiu, C.; Liu, Y. Virtual network embedding using node multiple metrics based on simplified ELECTRE method. IEEE Access 2018, 6, 37314–37327. [Google Scholar] [CrossRef]
- Nghiem, T.B.H.; Chu, T.C. Evaluating sustainable conceptual designs using an AHP-based ELECTRE I method. Int. J. Inf. Technol. Decis. Mak. 2021, 20, 1121–1152. [Google Scholar] [CrossRef]
- Nijkamp, P.; Van Delft, A. Multi-Criteria Analysis and Regional Decision-Making; Springer Science & Business Media: Berlin, Germany, 1977; Volume 8. [Google Scholar]
- Ke, C.K.; Chen, Y.L. A message negotiation approach to e-services by utility function and multi-criteria decision analysis. Comput. Math. Appl. 2012, 64, 1056–1064. [Google Scholar] [CrossRef]
- Nghiem, T.B.H.; Chu, T.C. Evaluating lean facility layout designs using a BWM-Base fuzzy ELECTRE I method. Axioms 2022, 11, 447. [Google Scholar] [CrossRef]
- Kaufmann, A.; Gupta, M.M. Introduction to Fuzzy Arithmetic: Theory and Application; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–626. [Google Scholar] [CrossRef]
- Laarhoven, P.J.M.; Pedrycz, W. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 1983, 11, 199–227. [Google Scholar] [CrossRef]
- Chen, S.M.; Hong, J.A. Fuzzy multiple attributes group decision making based on ranking interval type-2 fuzzy sets and the TOPSIS method. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 1665–1673. [Google Scholar] [CrossRef]
- Yu, V.F.; Van, L.H.; Dat, L.Q.; Chi, H.T.X.; Chou, S.Y.; Duong, T.T.T. Analyzing the ranking method for fuzzy numbers in fuzzy decision making based on the magnitude concepts. Int. J. Fuzzy Syst. 2017, 19, 1279–1289. [Google Scholar] [CrossRef]
- Nayagam, V.L.G.; Jeevaraj, S.; Dhanasekaran, P. An improved ranking method for comparing trapezoidal intuitionistic fuzzy numbers and its applications to multicriteria decision making. Neural Comput. Appl. 2018, 30, 671–682. [Google Scholar] [CrossRef]
- De, A.; Kundu, P.; Das, S.; Kar, S. A ranking method based on interval type-2 fuzzy sets for multiple attribute group decision making. Soft Comput. 2020, 24, 131–154. [Google Scholar] [CrossRef]
- Aguilera, A.; Carrasquel, S.; Coronado, D.; Monascal, R.; Rodriquez, R.; Tineo, L. An ordering of fuzzy numbers based on the Zadeh extension principle. Soft Comput. 2021, 26, 3091–3106. [Google Scholar] [CrossRef]
- Hop, N.V. Ranking fuzzy numbers based on relative positions and shape characteristics. Expert Syst. Appl. 2022, 191, 116312. [Google Scholar]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 1975, 8, 199–249(I), 301–357(II). [Google Scholar] [CrossRef]
- Wang, T.C.; Lee, H.D. Developing a fuzzy TOPSIS approach based on subjective weights and objective weights. Expert Syst. Appl. 2009, 36, 8980–8985. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications: A State-of-the-Art Survey; Springer: New York, NY, USA, 1981. [Google Scholar]
C1 | C2 | C3 | C4 | |
A1 | 6 | 5.5 | 6.5 | 8 |
A2 | 7 | 6.5 | 4.5 | 8 |
A3 | 6 | 2 | 4 | 3 |
Weight | 0.450 | 0.185 | 0.255 | 0.110 |
C1 | C2 | C3 | C4 | |
A1 | 0.545 | 0.629 | 0.734 | 0.683 |
A2 | 0.636 | 0.743 | 0.508 | 0.683 |
A3 | 0.545 | 0.229 | 0.451 | 0.256 |
C1 | C2 | C3 | C4 | |
A1 | 0.245 | 0.116 | 0.187 | 0.075 |
A2 | 0.286 | 0.137 | 0.130 | 0.075 |
A3 | 0.245 | 0.042 | 0.115 | 0.028 |
C1 | C2 | C3 | |
A1 | - | 0.365 | 1.000 |
A2 | 0.745 | - | 1.000 |
A3 | 0.450 | 0.000 | - |
A1 | A2 | A3 | |
A1 | - | 0.711 | 0.000 |
A2 | 1.000 | - | 0.000 |
A3 | 1.000 | 1.000 | - |
A1 | A2 | A3 | |
A1 | - | 0.289 | 1.000 |
A2 | 0.000 | - | 1.000 |
A3 | 0.000 | 0.000 | - |
A1 | A2 | A3 | |
A1 | - | 0.106 | 1.000 |
A2 | 0.000 | - | 1.000 |
A3 | 0.000 | 0.000 | - |
A1 | A2 | A3 | |
A1 | - | 1.000 | 1.000 |
A2 | 0.000 | - | 1.000 |
A3 | 0.000 | 0.000 | - |
A1 | A2 | A3 | |
A1 | - | 1.289 | 2.000 |
A2 | 1.000 | - | 2.000 |
A3 | 1.000 | 1.000 | - |
A1 | A2 | A3 | |
A1 | - | 0.471 | 2.000 |
A2 | 0.745 | - | 2.000 |
A3 | 0.450 | 0.000 | - |
Zhang et al.’s Values [51] | Closeness Coefficients | |
---|---|---|
A1 | 1.106 | 0.674 |
A2 | 0.894 | 0.854 |
A3 | −2.000 | 0.101 |
Symbol | Criteria | Quantitative | Qualitative |
---|---|---|---|
C1 | Data availability (B) | x | |
C2 | Data validity (B) | x | |
C3 | Technology development predictability (B) | x | |
C4 | Technology similarity (B) | x | |
C5 | Method adaptability (B) | x | |
C6 | Ease of operation (B) | x | |
C7 | Implementation cost (C, UDS) | x | |
C8 | Maintenance cost (C, USD) | x | |
C9 | Accuracy (C, %) | x | |
C10 | Timeliness in providing forecasts (C, months) | x | |
C11 | Ease of interpretation (B) | x |
C1 | C2 | C3 | C4 | C5 | C6 | |||||||||||||
xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | |
A1 | 0 | 0.1 | 0.3 | 0 | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | 0.3 | 0.5 | 0.7 | 0.5 | 0.7 | 0.9 | 0.7 | 0.9 | 1 |
A2 | 0.1 | 0.3 | 0.5 | 0.3 | 0.5 | 0.7 | 0.5 | 0.7 | 0.9 | 0.5 | 0.7 | 0.9 | 0.3 | 0.5 | 0.7 | 0.7 | 0.9 | 1 |
A3 | 0.3 | 0.5 | 0.7 | 0.3 | 0.5 | 0.7 | 0.5 | 0.7 | 0.9 | 0.3 | 0.5 | 0.7 | 0.3 | 0.5 | 0.7 | 0.5 | 0.7 | 0.9 |
A4 | 0.7 | 0.9 | 1 | 0.7 | 0.9 | 1 | 0.5 | 0.7 | 0.9 | 0.5 | 0.7 | 0.9 | 0.7 | 0.9 | 1 | 0 | 0.1 | 0.3 |
C7 | C8 | C9 | C10 | C11 | ||||||||||||||
xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | ||||
A1 | 348 | 348 | 348 | 50 | 50 | 50 | 35 | 35 | 35 | 1 | 1 | 1 | 0.7 | 0.9 | 1 | |||
A2 | 340 | 340 | 340 | 60 | 60 | 60 | 20 | 20 | 20 | 2 | 2 | 2 | 0.3 | 0.5 | 0.7 | |||
A3 | 350 | 350 | 350 | 60 | 60 | 60 | 23 | 23 | 23 | 3 | 3 | 3 | 0.5 | 0.7 | 0.9 | |||
A4 | 360 | 360 | 360 | 50 | 50 | 50 | 10 | 10 | 10 | 2 | 2 | 2 | 0.5 | 0.7 | 0.9 |
C1 | C2 | C3 | C4 | |||||||||
xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | |
A1 | 0.000 | 0.100 | 0.300 | 0.000 | 0.100 | 0.300 | 0.500 | 0.700 | 0.900 | 0.300 | 0.500 | 0.700 |
A2 | 0.300 | 0.500 | 0.700 | 0.300 | 0.500 | 0.700 | 0.100 | 0.300 | 0.500 | 0.500 | 0.700 | 0.900 |
A3 | 0.300 | 0.500 | 0.700 | 0.300 | 0.500 | 0.700 | 0.500 | 0.700 | 0.900 | 0.300 | 0.500 | 0.700 |
A4 | 0.700 | 0.900 | 1.000 | 0.700 | 0.900 | 1.000 | 0.300 | 0.500 | 0.700 | 0.500 | 0.700 | 0.900 |
Weight | 0.300 | 0.500 | 0.700 | 0.300 | 0.500 | 0.700 | 0.000 | 0.100 | 0.300 | 0.000 | 0.100 | 0.300 |
C5 | C6 | C7 | C8 | |||||||||
xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | |
A1 | 0.500 | 0.700 | 0.900 | 0.700 | 0.900 | 1.000 | 0.977 | 0.977 | 0.977 | 1.000 | 1.000 | 1.000 |
A2 | 0.300 | 0.500 | 0.700 | 0.700 | 0.900 | 1.000 | 1.000 | 1.000 | 1.000 | 0.833 | 0.833 | 0.833 |
A3 | 0.300 | 0.500 | 0.700 | 0.500 | 0.700 | 0.900 | 0.971 | 0.971 | 0.971 | 0.833 | 0.833 | 0.833 |
A4 | 0.700 | 0.900 | 1.000 | 0.000 | 0.100 | 0.300 | 0.944 | 0.944 | 0.944 | 1.000 | 1.000 | 1.000 |
Weight | 0.000 | 0.100 | 0.300 | 0.300 | 0.500 | 0.700 | 0.500 | 0.700 | 0.900 | 0.300 | 0.500 | 0.700 |
C9 | C10 | C11 | ||||||||||
xl | xγ | xu | xl | xγ | xu | xl | xγ | xu | ||||
A1 | 0.286 | 0.286 | 1.000 | 1.000 | 0.700 | 0.900 | 1.000 | |||||
A2 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.300 | 0.500 | 0.700 | |||
A3 | 0.435 | 0.435 | 0.435 | 0.333 | 0.333 | 0.333 | 0.500 | 0.700 | 0.900 | |||
A4 | 1.000 | 1.000 | 1.000 | 0.500 | 0.500 | 0.500 | 0.500 | 0.700 | 0.900 | |||
Weight | 0.700 | 0.900 | 1.000 | 0.300 | 0.500 | 0.700 | 0.300 | 0.500 | 0.700 |
C1 | C2 | |||||||||||
Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | |
A1 | 0.020 | 0.030 | 0.000 | 0.040 | −0.200 | 0.210 | 0.020 | 0.030 | 0.000 | 0.040 | −0.200 | 0.210 |
A2 | 0.040 | 0.120 | 0.090 | 0.040 | −0.280 | 0.490 | 0.040 | 0.120 | 0.090 | 0.040 | −0.280 | 0.490 |
A3 | 0.040 | 0.120 | 0.090 | 0.040 | −0.280 | 0.490 | 0.040 | 0.120 | 0.090 | 0.040 | −0.280 | 0.490 |
A4 | 0.040 | 0.200 | 0.210 | 0.020 | −0.270 | 0.700 | 0.040 | 0.200 | 0.210 | 0.020 | −0.270 | 0.700 |
C3 | C4 | |||||||||||
Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | |
A1 | 0.020 | 0.050 | 0.000 | 0.040 | −0.240 | 0.270 | 0.020 | 0.030 | 0.000 | 0.040 | −0.200 | 0.210 |
A2 | 0.020 | 0.010 | 0.000 | 0.040 | −0.160 | 0.150 | 0.020 | 0.050 | 0.000 | 0.040 | −0.240 | 0.270 |
A3 | 0.020 | 0.050 | 0.000 | 0.040 | −0.240 | 0.270 | 0.020 | 0.030 | 0.000 | 0.040 | −0.200 | 0.210 |
A4 | 0.020 | 0.030 | 0.000 | 0.040 | −0.200 | 0.210 | 0.020 | 0.050 | 0.000 | 0.040 | −0.240 | 0.270 |
C5 | C6 | |||||||||||
Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | |
A1 | 0.02 | 0.05 | 0.00 | 0.04 | −0.24 | 0.27 | 0.04 | 0.20 | 0.21 | 0.02 | −0.27 | 0.70 |
A2 | 0.02 | 0.03 | 0.00 | 0.04 | −0.20 | 0.21 | 0.04 | 0.20 | 0.21 | 0.02 | −0.27 | 0.70 |
A3 | 0.02 | 0.03 | 0.00 | 0.04 | −0.20 | 0.21 | 0.04 | 0.16 | 0.15 | 0.04 | −0.32 | 0.63 |
A4 | 0.02 | 0.07 | 0.00 | 0.02 | −0.23 | 0.30 | 0.02 | 0.03 | 0.00 | 0.04 | −0.20 | 0.21 |
C7 | C8 | |||||||||||
Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | |
A1 | 0.00 | 0.20 | 0.49 | 0.00 | −0.20 | 0.88 | 0.00 | 0.20 | 0.30 | 0.00 | −0.20 | 0.70 |
A2 | 0.00 | 0.20 | 0.50 | 0.00 | −0.20 | 0.90 | 0.00 | 0.17 | 0.25 | 0.00 | −0.17 | 0.58 |
A3 | 0.00 | 0.19 | 0.49 | 0.00 | −0.19 | 0.87 | 0.00 | 0.17 | 0.25 | 0.00 | −0.17 | 0.58 |
A4 | 0.00 | 0.19 | 0.47 | 0.00 | −0.19 | 0.85 | 0.00 | 0.20 | 0.30 | 0.00 | −0.20 | 0.70 |
C9 | C10 | |||||||||||
Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | |
A1 | 0.00 | 0.06 | 0.20 | 0.00 | −0.03 | 0.29 | 0.00 | 0.20 | 0.30 | 0.00 | −0.20 | 0.70 |
A2 | 0.00 | 0.10 | 0.35 | 0.00 | −0.05 | 0.50 | 0.00 | 0.10 | 0.15 | 0.00 | −0.10 | 0.35 |
A3 | 0.00 | 0.09 | 0.30 | 0.00 | −0.04 | 0.43 | 0.00 | 0.07 | 0.10 | 0.00 | −0.07 | 0.23 |
A4 | 0.00 | 0.20 | 0.70 | 0.00 | −0.10 | 1.00 | 0.00 | 0.10 | 0.15 | 0.00 | −0.10 | 0.35 |
C11 | ||||||||||||
Gij1 | Hij1 | Lij1 | Gij2 | Hij2 | Lij2 | |||||||
A1 | 0.04 | 0.20 | 0.21 | 0.02 | −0.27 | 0.70 | ||||||
A2 | 0.04 | 0.12 | 0.09 | 0.04 | −0.28 | 0.49 | ||||||
A3 | 0.04 | 0.16 | 0.15 | 0.04 | −0.32 | 0.63 | ||||||
A4 | 0.04 | 0.16 | 0.15 | 0.04 | −0.32 | 0.63 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | |
A12 | −0.191 | −0.191 | 0.050 | −0.025 | 0.025 | 0.000 | −0.016 | 0.083 | −0.188 | 0.250 | 0.184 |
A13 | −0.191 | −0.191 | 0.000 | 0.000 | 0.025 | 0.084 | 0.004 | 0.083 | −0.130 | 0.333 | 0.084 |
A14 | −0.375 | −0.375 | 0.025 | −0.025 | −0.019 | 0.375 | 0.023 | 0.000 | −0.625 | 0.250 | 0.084 |
A21 | 0.191 | 0.191 | −0.050 | 0.025 | −0.025 | 0.000 | 0.016 | −0.083 | 0.188 | −0.250 | −0.184 |
A23 | 0.000 | 0.000 | −0.050 | 0.025 | 0.000 | 0.084 | 0.020 | 0.000 | 0.057 | 0.083 | −0.100 |
A24 | −0.184 | −0.184 | −0.025 | 0.000 | −0.044 | 0.375 | 0.039 | −0.083 | −0.438 | 0.000 | −0.100 |
A31 | 0.191 | 0.191 | 0.000 | 0.000 | −0.025 | −0.084 | −0.004 | −0.083 | 0.130 | −0.333 | −0.084 |
A32 | 0.000 | 0.000 | 0.050 | −0.025 | 0.000 | −0.084 | −0.020 | 0.000 | −0.057 | −0.083 | 0.100 |
A34 | −0.184 | −0.184 | 0.025 | −0.025 | −0.044 | 0.291 | 0.019 | −0.083 | −0.495 | −0.083 | 0.000 |
A41 | 0.375 | 0.375 | −0.025 | 0.025 | 0.019 | −0.375 | −0.023 | 0.000 | 0.625 | −0.250 | −0.084 |
A42 | 0.184 | 0.184 | 0.025 | 0.000 | 0.044 | −0.375 | −0.039 | 0.083 | 0.438 | 0.000 | 0.100 |
A43 | 0.184 | 0.184 | −0.025 | 0.025 | 0.044 | −0.291 | −0.019 | 0.083 | 0.495 | 0.083 | 0.000 |
Weight | 0.101 | 0.101 | 0.025 | 0.025 | 0.025 | 0.101 | 0.141 | 0.101 | 0.177 | 0.101 | 0.101 |
Concordance = 1, Discordance = 0 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | |
A12 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
A13 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
A14 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
A21 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
A23 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
A24 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
A31 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
A32 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
A34 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
A41 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
A42 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
A43 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
A1 | A2 | A3 | A4 | |
A1 | - | 0.455 | 0.621 | 0.571 |
A2 | 0.646 | - | 0.000 | 0.369 |
A3 | 0.429 | 0.455 | - | 0.369 |
A4 | 0.530 | 0.758 | 0.268 | - |
A1 | A2 | A3 | A4 | |
A1 | - | 0.763 | 0.573 | 1.000 |
A2 | 1.000 | - | 1.000 | 1.000 |
A3 | 1.000 | 0.842 | - | 1.000 |
A4 | 0.600 | 0.857 | 0.588 | - |
A1 | A2 | A3 | A4 | |
A1 | - | 0.237 | 0.428 | 0.000 |
A2 | 0.000 | - | 0.000 | 0.000 |
A3 | 0.000 | 0.158 | - | 0.000 |
A4 | 0.400 | 0.143 | 0.412 | - |
A1 | A2 | A3 | A4 | |
A1 | - | 1.237 | 1.428 | 1.000 |
A2 | 1.000 | - | 1.000 | 1.000 |
A3 | 1.000 | 1.1583 | - | 1.000 |
A4 | 1.400 | 1.1429 | 1.412 | - |
A1 | A2 | A3 | A4 | |
A1 | - | 0.562 | 0.887 | 0.571 |
A2 | 0.6465 | - | 0.000 | 0.369 |
A3 | 0.4293 | 0.527 | - | 0.369 |
A4 | 0.7424 | 0.866 | 0.378 | - |
Closeness Coefficients | Ranking | |
---|---|---|
A1 | 0.526 | 2 |
A2 | 0.342 | 4 |
A3 | 0.512 | 3 |
A4 | 0.603 | 1 |
A1 | A2 | A3 | A4 | |
A1 | - | 0.108 | 0.266 | 0.000 |
A2 | 0.000 | - | 0.000 | 0.000 |
A3 | 0.000 | 0.072 | - | 0.000 |
A4 | 0.212 | 0.108 | 0.110 | - |
A1 | A2 | A3 | A4 | |
A1 | - | 0 | 1 | 0 |
A2 | 0 | - | 0 | 0 |
A3 | 0 | 0 | - | 0 |
A4 | 1 | 0 | 1 | - |
A1 | A2 | A3 | A4 | |
A1 | - | −0.309 | 0.049 | −0.429 |
A2 | −0.354 | - | −1 | −0.631 |
A3 | −0.571 | −0.387 | - | −0.631 |
A4 | −0.070 | −0.100 | −0.320 | - |
A1 | A2 | A3 | A4 | |
A1 | - | 1 | 1 | 0 |
A2 | 1 | - | 0 | 0 |
A3 | 0 | 1 | - | 0 |
A4 | 1 | 1 | 1 | - |
Net Concordance | Net Modified Discordance | |
---|---|---|
A1 | 0.040 | 0.264 |
A2 | −0.652 | −0.538 |
A3 | 0.364 | −0.681 |
A4 | 0.247 | 0.955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, T.-C.; Nghiem, T.B.H. Extension of Fuzzy ELECTRE I for Evaluating Demand Forecasting Methods in Sustainable Manufacturing. Axioms 2023, 12, 926. https://doi.org/10.3390/axioms12100926
Chu T-C, Nghiem TBH. Extension of Fuzzy ELECTRE I for Evaluating Demand Forecasting Methods in Sustainable Manufacturing. Axioms. 2023; 12(10):926. https://doi.org/10.3390/axioms12100926
Chicago/Turabian StyleChu, Ta-Chung, and Thi Bich Ha Nghiem. 2023. "Extension of Fuzzy ELECTRE I for Evaluating Demand Forecasting Methods in Sustainable Manufacturing" Axioms 12, no. 10: 926. https://doi.org/10.3390/axioms12100926
APA StyleChu, T. -C., & Nghiem, T. B. H. (2023). Extension of Fuzzy ELECTRE I for Evaluating Demand Forecasting Methods in Sustainable Manufacturing. Axioms, 12(10), 926. https://doi.org/10.3390/axioms12100926