Generalized Reynolds Operators on Lie-Yamaguti Algebras
Abstract
:1. Introduction
2. Preliminaries
3. Generalized Reynolds Operators on Lie-Yamaguti Algebras
4. Cohomology of Generalized Reynolds Operators
5. Formal Deformations of Generalized Reynolds Operator
6. Nijenhuis Operators and Reynolds Operators on Lie-Yamaguti Algebras
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baxter, G. An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 1960, 10, 731–742. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. What a classical r-matrix really is. J. Nonlinear Math. Phys. 1999, 6, 448–488. [Google Scholar] [CrossRef]
- Reynolds, O. On the dynamical theory of incompressible viscous fluids and the determina-tion of the criterion. Philos. Trans. Roy. Soc. A 1895, 136, 123–164. [Google Scholar]
- Kampé de Fériet, J. Introduction to the Statistical Theory of Turbulence, Correlation and Spectrum; The Institute for Fluid Dynamics and Applied Mathematics University of Maryland: College Park, MD, USA, 1951; pp. iv+162. [Google Scholar]
- Uchino, K. Quantum analogy of Poisson geometry, related dendriform algebras and Ro-ta-Baxter operators. Lett. Math. Phys. 2008, 85, 91–109. [Google Scholar] [CrossRef]
- Das, A. Cohomology and deformations of twisted Rota-Baxter operators and NS-algebras. J. Homotopy Relat. Struct. 2022, 17, 233–262. [Google Scholar] [CrossRef]
- Das, A. Twisted Rota-Baxter operators and Reynolds operators on Lie algebras and NS-Lie algebras. J. Math. Phys. 2021, 62, 091701. [Google Scholar] [CrossRef]
- Das, A.; Guo, S. Twisted relative Rota-Baxter operators on Leibniz algebras and NS-Leibniz algebras. arXiv 2021, arXiv:2102.09752. [Google Scholar]
- Chtioui, T.; Hajjaji, A.; Mabrouk, S.; Makhlouf, A. Twisted O-operators on 3-Lie algebras and 3-NS-Lie algebras. arXiv 2021, arXiv:2107.10890v1. [Google Scholar]
- Hou, S.; Sheng, Y. Generalized Reynolds operators on 3-Lie algebras and NS-3-Lie algebras. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150223. [Google Scholar] [CrossRef]
- Kinyon, M.K.; Weinstein, A. Leibniz algebras, Courant algebroids and multiplications on reductive homogeneous spaces. Am. J. Math. 2001, 123, 525–550. [Google Scholar] [CrossRef]
- Nomizu, K. Invariant affine connections on homogeneous spaces. Am. J. Math. 1954, 76, 33–65. [Google Scholar] [CrossRef]
- Yamaguti, K. On the Lie triple system and its generalization. J. Sci. Hiroshima Univ. Ser. A 1958, 21, 155–160. [Google Scholar] [CrossRef]
- Yamaguti, K. On cohmology groups of general Lie triple systems. Kumamoto J. Sci. A 1969, 8, 135–146. [Google Scholar]
- Lin, J.; Chen, L.; Ma, Y. On the deformaions of Lie-Yamaguti algebras. Acta. Math. Sin. (Engl. Ser.) 2015, 31, 938–946. [Google Scholar] [CrossRef]
- Zhang, T.; Li, J. Deformations and extension of Lie-Yamaguti algebras. Linear-Multi-Linear Algebra 2015, 63, 2212–2231. [Google Scholar] [CrossRef]
- Lin, J.; Chen, L. Quasi-derivations of Lie-Yamaguti algebras. J. Alg. Appl. 2023, 22, 2350119. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhao, J.; Zhou, Y. Nijenhuis operators, product structures and complex structures on Lie-Yamaguti algebras. J. Alg. Appl. 2021, 20, 2150146. [Google Scholar] [CrossRef]
- Takahashi, N. Modules over quadratic spaces and representations of Lie-Yamaguti algebras. arXiv 2020, arXiv:2010.05564. [Google Scholar]
- Guo, S.; Mondal, B.; Saha, R. On equivariant Lie-Yamaguti algebras and related structures. Asian-Eur. J. Math. 2023, 16, 2350022. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhao, J. Relative Rota-Baxter operators and symplectic structures on Lie-Yamaguti algebras. Commun. Algebra 2022, 50, 4056–4073. [Google Scholar] [CrossRef]
- Zhao, J.; Qiao, Y. Cohomologies and deformations of relative Rota-Baxter operators on Lie-Yamaguti algebras. arXiv 2022, arXiv:2204.04872. [Google Scholar]
- Teng, W. Relative Differential Operator on Lie-Yamaguti Algebras. Available online: https://www.researchgate.net/publication/367049532 (accessed on 14 January 2023). [CrossRef]
- Teng, W. Cohomology of Weighted Rota-Baxter Lie-Yamaguti Algebras. Available online: https://www.researchgate.net/publication/366007049 (accessed on 5 December 2022). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, W.; Jin, J.; Long, F. Generalized Reynolds Operators on Lie-Yamaguti Algebras. Axioms 2023, 12, 934. https://doi.org/10.3390/axioms12100934
Teng W, Jin J, Long F. Generalized Reynolds Operators on Lie-Yamaguti Algebras. Axioms. 2023; 12(10):934. https://doi.org/10.3390/axioms12100934
Chicago/Turabian StyleTeng, Wen, Jiulin Jin, and Fengshan Long. 2023. "Generalized Reynolds Operators on Lie-Yamaguti Algebras" Axioms 12, no. 10: 934. https://doi.org/10.3390/axioms12100934
APA StyleTeng, W., Jin, J., & Long, F. (2023). Generalized Reynolds Operators on Lie-Yamaguti Algebras. Axioms, 12(10), 934. https://doi.org/10.3390/axioms12100934