The Boundary Integral Equation for Kinetically Limited Dendrite Growth
Abstract
:1. Introduction
- -
- -
2. Two-Dimensional BIE for Solidifying Pure Liquid
3. Two-Dimensional BIE for Solidifying Pure and/or Binary Liquid
4. Three-Dimensional BIE for a Paraboloid of Revolution and Elliptic Paraboloid Growing from Undercooled Binary Liquid
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mullin, J.W. Crystallization; Butterworths: London, UK, 1972. [Google Scholar]
- Borisov, V.T. Theory of Two-Phase Zone of a Metal Ingot; Metallurgiya Publishing House: Moscow, Russia, 1987. [Google Scholar]
- Slezov, V.V. Kinetics of First-Order Phase Transitions; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Kurz, W.; Fisher, D.J.; Trivedi, R. Progress in modelling solidification microstructures in metals and alloys: Dendrites and cells from 1700 to 2000. Int. Mater. Rev. 2019, 64, 311–354. [Google Scholar] [CrossRef]
- Makoveeva, E.V. Steady-state crystallization with a mushy layer: A test of theory with experiments. Eur. Phys. J. Spec. Top. 2023, 232, 1165–1169. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Alexandrov, D.V.; Galenko, P.K. The impact of convection on morphological instability of a planar crystallization front. Int. J. Heat Mass Trans. 2023, 217, 124654. [Google Scholar] [CrossRef]
- Nash, G.E. Capillary-Limited, Steady State Dendritic Growth. Part I. Theoretical Development; NRL Report; Naval Research Laboratory: Washington, DC, USA, May 1974. [Google Scholar]
- Nash, G.E.; Glicksman, M.E. Capillary-limited steady-state dendritic growth—I. Theoretical development. Acta Metall. 1974, 22, 1283–1290. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Boundary integral approach for propagating interfaces in a binary non-isothermal mixture. Phys. A 2017, 469, 420–428. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Selection criterion of stable mode of dendritic growth with n-fold symmetry at arbitrary Péclet numbers with a forced convection. In IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics, Proceedings of the IUTAM Symposium on Moving Boundary Problems, Christchurch, New Zealand, 12–15 February 2018; Springer: Cham, Switzerland, 2019; pp. 203–215. [Google Scholar]
- Saville, D.A.; Beaghton, P.J. Growth of needle-shaped crystals in the presence of convection. Phys. Rev. A 1988, 37, 3423–3430. [Google Scholar] [CrossRef]
- Titova, E.A.; Alexandrov, D.V. The boundary integral equation for curved solid/liquid interfaces propagating into a binary liquid with convection. J. Phys. A Math. Theor. 2022, 55, 055701. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Toropova, L.V. The role of incoming flow on crystallization of undercooled liquids with a two-phase layer. Sci. Rep. 2022, 12, 17857. [Google Scholar] [CrossRef]
- Pelce, P.; Pomeau, Y. Dendrites in the small undercooling limit. J. Stud. Appl. Math. 1986, 74, 245–258. [Google Scholar] [CrossRef]
- Ben Amar, M.; Pomeau, Y. Theory of dendritic growth in a weakly undercooled melt. Europhys. Lett. 1986, 2, 307–314. [Google Scholar] [CrossRef]
- Ben Amar, M. Theory of needle-crystal. Phys. D 1988, 31, 409–423. [Google Scholar] [CrossRef]
- Barbieri, A.; Hong, D.C.; Langer, J.S. Velocity selection in the symmetric model of dendritic crystal growth. Phys. Rev. A 1987, 35, 1802–1808. [Google Scholar] [CrossRef]
- Barbieri, A.; Langer, J.S. Predictions of dendritic growth rates in the linearized solvability theory. Phys. Rev. A 1989, 39, 5314–5325. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.N.; Barbieri, A.; Langer, J.S. Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification. Phys. Rev. A 1987, 36, 3340–3349. [Google Scholar] [CrossRef] [PubMed]
- Brener, E.A.; Mel’nikov, V.A. Pattern selection in two-dimensional dendritic growth. Adv. Phys. 1991, 40, 53–97. [Google Scholar] [CrossRef]
- Barbieri, A. Velocity selection at large undercooling in a two-dimensional nonlocal model of solidification. Phys. Rev. A 1987, 36, 5353–5358. [Google Scholar] [CrossRef]
- Brener, E.A.; Mel’nikov, V.A. Two-dimensional dendritic growth at arbitrary Peclet number. J. Phys. Fr. 1990, 51, 157–166. [Google Scholar] [CrossRef]
- Galenko, P.K.; Alexandrov, D.V.; Titova, E.A. The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systems. Philos. Trans. R. Soc. A 2018, 376, 20170218. [Google Scholar] [CrossRef]
- Tong, X.; Beckermann, C.; Karma, A.; Li, Q. Phase-field simulations of dendritic crystal growth in a forced flow. Phys. Rev. E 2001, 63, 061601. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Goldenfeld, N.; Dantzig, J.A. Phase field model for three-dimensional dendritic growth with fluid flow. Phys. Rev. E 2001, 64, 041602. [Google Scholar] [CrossRef]
- Toropova, L.V.; Galenko, P.K.; Alexandrov, D.V.; Rettenmayr, M.; Kao, A.; Demange, G. Non-axisymmetric growth of dendrite with arbitrary symmetry in two and three dimensions: Sharp interface model vs phase-field model. Eur. Phys. J. Spec. Top. 2020, 229, 2899–2909. [Google Scholar] [CrossRef]
- Makoveeva, E.V. Mathematical modeling of the crystal growth process in a binary system. AIP Conf. Proc. 2020, 2313, 030058. [Google Scholar]
- Makoveeva, E.V. The effect of nonlinear growth rates of crystals on the evolution of particulate ensembles in binary liquids. AIP Conf. Proc. 2020, 2259, 020005. [Google Scholar]
- Zhu, C.-S.; Li, T.-Y.; Zhao, B.-R.; Wang, C.-L.; Gao, Z.-H. Simulation of inclined dendrites under natural convection by KKS phase field model based on CUDA. China Foundry 2023, 20, 432–442. [Google Scholar] [CrossRef]
- Teraoka, Y.; Saito, A.; Okawa, S. Ice crystal growth in supercooled solution. Int. J. Refrig. 2002, 25, 218–225. [Google Scholar] [CrossRef]
- Demange, G.; Zapolsky, H.; Patte, R.; Brunel, M. Growth kinetics and morphology of snowflakes in supersaturated atmosphere using a three-dimensional phase-field model. Phys. Rev. E 2017, 96, 022803. [Google Scholar] [CrossRef]
- Makoveeva, E.V. An exact analytical solution to the nonstationary coagulation equation describing the endosomal network dynamics. Math. Meth. Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Titova, E.A.; Galenko, P.K.; Alexandrov, D.V. Method of evaluation for the non-stationary period of primary dendritic crystallization. J. Phys. Chem. Solids 2019, 134, 176–181. [Google Scholar] [CrossRef]
- Chan, S.K.; Reimer, H.H.; Kahlweit, M. On the stationary growth shapes of NH4Cl dendrites. J. Cryst. Growth 1976, 326, 303–315. [Google Scholar] [CrossRef]
- Brener, E.A. Effects of surface energy and kinetics on the growth of needle-like dendrites. J. Cryst. Growth 1990, 99, 165–170. [Google Scholar] [CrossRef]
- Makoveeva, E.V. Mathematical modeling of nonlinear growth rates of crystals with allowance for Meirs kinetics. AIP Conf. Proc. 2019, 2174, 020136. [Google Scholar]
- Alexandrov, D.V.; Galenko, P.K. The shape of dendritic tips. Philos. Trans. R. Soc. A 2020, 378, 20190243. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, J.J.; Sadigh, B.; Asta, M.; Foiles, S.M. Kinetic phase field parameters for the Cu-Ni system derived from atomistic computations. Acta Mater. 1999, 47, 3181–3187. [Google Scholar] [CrossRef]
- Mendelev, M.I.; Rahman, M.J.; Hoyt, J.J.; Asta, M. Molecular-dynamics study of solid-liquid interface migration in fcc metals. Model. Simul. Mater. Sci. Eng. 2010, 18, 074002. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Ivanov, A.A. Analysis of an integro-differential model for bulk continuous crystallization with account of impurity feeding, dissolution/growth of nuclei and removal of product crystals. Math. Meth. Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Xie, Y.; Dong, H.; Dantzig, J. Growth of secondary dendrite arms of Fe-C alloy during transient directional solidification by phase-field method. ISI J. Int. 2014, 54, 430–436. [Google Scholar] [CrossRef]
- Ditkin, V.A.; Prudnikov, A.P. Integral Transforms and Operational Calculus; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- von Doetsch, G. Anleitung zum Praktischen Gebrauch der Laplace-Transformation und der Z-Transformation; R. Oldenbourg: München, Germany, 1961. [Google Scholar]
- Reinartz, M.; Kolbe, M.; Herlach, D.M.; Rettenmayr, M.; Toropova, L.V.; Alexandrov, D.V.; Galenko, P.K. Study on anomalous rapid solidification of Al-35 at%Ni in microgravity. JOM 2022, 74, 2420–2427. [Google Scholar] [CrossRef]
- Galenko, P.K.; Toropova, L.V.; Alexandrov, D.V.; Phanikumar, G.; Assadi, H.; Reinartz, M.; Paul, P.; Fang, Y.; Lippmann, S. Anomalous kinetics, patterns formation in recalescence, and final microstructure of rapidly solidified Al-rich Al-Ni alloys. Acta Mater. 2022, 241, 118384. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. A review on the theory of stable dendritic growth. Philos. Trans. R. Soc. A 2021, 379, 20200325. [Google Scholar] [CrossRef] [PubMed]
- Pélce, P. Dynamics of Curved Fronts; Academic Press: Boston, MA, USA, 1988. [Google Scholar]
- Nizovtseva, I.G.; Ivanov, A.A.; Alexandrova, I.V. Approximate analytical solution of the integro-differential model of bulk crystallization in a metastable liquid with mass supply (heat dissipation) and crystal withdrawal mechanism. Math. Meth. Appl. Sci. 2022, 45, 8170–8178. [Google Scholar] [CrossRef]
- Libbrecht, K. Snowflakes; Voyageur Press: Minneapolis, MN, USA, 2004. [Google Scholar]
- Libbrecht, K.G. The formation of snow crystals. Am. Sci. 2007, 95, 52–59. [Google Scholar] [CrossRef]
- Makoveeva, E.V. Mathematical modeling of nonlinear crystal growth rates in binary systems. AIP Conf. Proc. 2020, 2216, 030004. [Google Scholar]
- Makoveeva, E.V.; Tsvetkov, I.N.; Ryashko, L.B. Stochastically-induced dynamics of earthquakes. Eur. Math. Meth. Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Alexandrov, D.V.; Ivanov, A.A.; Alexandrova, I.V. Desupersaturation dynamics in solutions with applications to bovine and porcine insulin crystallization. J. Phys. A: Math. Theor. 2023, 56, 455702. [Google Scholar] [CrossRef]
- Almgren, R.; Dai, W.-S.; Hakim, V. Scaling behavior in anisotropic Hele-Shaw flow. Phys. Rev. Lett. 1993, 71, 3461–3464. [Google Scholar] [CrossRef]
- Langer, J.S.; Turski, L.A. Studies in the theory of interfacial stability—I. Stationary symmetric model. Acta Metall. 1977, 25, 1113–1119. [Google Scholar] [CrossRef]
- Langer, J.S. Studies in the theory of interfacial stability—II. Moving symmetric model. Acta Metall. 1977, 25, 1121–1137. [Google Scholar] [CrossRef]
- Flemings, M.C. Solidification Processing; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Lyubov, B.Y. Theory of Crystallization in Large Volumes; Nauka: Moscow, Russia, 1975. [Google Scholar]
- Gupta, S.C. Classical Stefan Problem; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Ben Amar, M. Dendritic growth rate at arbitrary undercooling. Phys. Rev. A 1990, 41, 2080–2092. [Google Scholar] [CrossRef]
- Conti, M. Thermal and chemical diffusion in the rapid solidification of binary alloys. Phys. Rev. E 2000, 61, 642–650. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titova, E.A.; Galenko, P.K.; Nikishina, M.A.; Toropova, L.V.; Alexandrov, D.V. The Boundary Integral Equation for Kinetically Limited Dendrite Growth. Axioms 2023, 12, 1016. https://doi.org/10.3390/axioms12111016
Titova EA, Galenko PK, Nikishina MA, Toropova LV, Alexandrov DV. The Boundary Integral Equation for Kinetically Limited Dendrite Growth. Axioms. 2023; 12(11):1016. https://doi.org/10.3390/axioms12111016
Chicago/Turabian StyleTitova, Ekaterina A., Peter K. Galenko, Margarita A. Nikishina, Liubov V. Toropova, and Dmitri V. Alexandrov. 2023. "The Boundary Integral Equation for Kinetically Limited Dendrite Growth" Axioms 12, no. 11: 1016. https://doi.org/10.3390/axioms12111016
APA StyleTitova, E. A., Galenko, P. K., Nikishina, M. A., Toropova, L. V., & Alexandrov, D. V. (2023). The Boundary Integral Equation for Kinetically Limited Dendrite Growth. Axioms, 12(11), 1016. https://doi.org/10.3390/axioms12111016