Introduction to the Special Issue in Axioms Titled Current Research on Mathematical Inequalities
Behind every theorem lies an inequality. |
Funding
Acknowledgments
Conflicts of Interest
References
- Kovač, S. A Note on Hermite-Hadamard-Fejer Type Inequalities for Functions Whose n-th Derivatives Are m-Convex or (α, m)-Convex Functions. Axioms 2022, 11, 16. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Murtaza, G.; Ali, M.A.; Promsakon, C.; Sial, I.B.; Agarwal, P. Post-Quantum Midpoint-Type Inequalities Associated with Twice-Differentiable Functions. Axioms 2022, 11, 46. [Google Scholar] [CrossRef]
- Kim, B.; Jung, S.-M. Perturbation of One-Dimensional Time-Independent Schrödinger Equation with a Near-Hyperbolic Potential. Axioms 2022, 11, 63. [Google Scholar] [CrossRef]
- Nale, A.B.; Chinchane, V.L.; Panchal, S.K.; Chesneau, C. Pólya-Szegö Integral Inequalities Using the Caputo-Fabrizio Approach. Axioms 2022, 11, 79. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Wang, L.; Yu, K. K-Nearest Neighbor Estimation of Functional Nonparametric Regression Model under NA Samples. Axioms 2022, 11, 102. [Google Scholar] [CrossRef]
- Sial, I.B.; Patanarapeelert, N.; Ali, M.A.; Budak, H.; Sitthiwirattham, T. On Some New Ostrowski-Mercer-Type Inequalities for Differentiable Functions. Axioms 2022, 11, 132. [Google Scholar] [CrossRef]
- Illafe, M.; Amourah, A.; Haji Mohd, M. Coefficient Estimates and Fekete-Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions. Axioms 2022, 11, 147. [Google Scholar] [CrossRef]
- Rodić, M. Some Generalizations of the Jensen-Type Inequalities with Applications. Axioms 2022, 11, 227. [Google Scholar] [CrossRef]
- Thool, S.B.; Bagul, Y.J.; Dhaigude, R.M.; Chesneau, C. Bounds for Quotients of Inverse Trigonometric and Inverse Hyperbolic Functions. Axioms 2022, 11, 262. [Google Scholar] [CrossRef]
- Alomari, M.W.; Shebrawi, K.; Chesneau, C. Some Generalized Euclidean Operator Radius Inequalities. Axioms 2022, 11, 285. [Google Scholar] [CrossRef]
- Smoljak Kalamir, K. New Diamond-α Steffensen-Type Inequalities for Convex Functions over General Time Scale Measure Spaces. Axioms 2022, 11, 323. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, M.B.; Treantǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
- Desta, H.D.; Pachpatte, D.B.; Mijena, J.B.; Abdi, T. Univariate and Multivariate Ostrowski-Type Inequalities Using Atangana-Baleanu Caputo Fractional Derivative. Axioms 2022, 11, 482. [Google Scholar] [CrossRef]
- Latif, M.A. Weighted Integral Inequalities for Harmonic Convex Functions in Connection with Fejér’s Result. Axioms 2022, 11, 564. [Google Scholar] [CrossRef]
- Latif, M.A. On Symmetrized Stochastic Harmonically Convexity and Hermite-Hadamard Type Inequalities. Axioms 2022, 11, 570. [Google Scholar] [CrossRef]
- Alomari, M.W.; Chesneau, C.; Al-Khasawneh, A. Operator Jensen’s Inequality for Operator Superquadratic Functions. Axioms 2022, 11, 617. [Google Scholar] [CrossRef]
- Altwaijry, N.; Feki, K.; Minculete, N. Some New Estimates for the Berezin Number of Hilbert Space Operators. Axioms 2022, 11, 683. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chesneau, C. Introduction to the Special Issue in Axioms Titled Current Research on Mathematical Inequalities. Axioms 2023, 12, 109. https://doi.org/10.3390/axioms12020109
Chesneau C. Introduction to the Special Issue in Axioms Titled Current Research on Mathematical Inequalities. Axioms. 2023; 12(2):109. https://doi.org/10.3390/axioms12020109
Chicago/Turabian StyleChesneau, Christophe. 2023. "Introduction to the Special Issue in Axioms Titled Current Research on Mathematical Inequalities" Axioms 12, no. 2: 109. https://doi.org/10.3390/axioms12020109
APA StyleChesneau, C. (2023). Introduction to the Special Issue in Axioms Titled Current Research on Mathematical Inequalities. Axioms, 12(2), 109. https://doi.org/10.3390/axioms12020109