A New Framework for Numerical Techniques for Fuzzy Nonlinear Equations
Abstract
:1. Introduction
- Using fuzzy operations based on the extension principle (in the context of membership functions) or interval calculations (in the context of -cuts);
- Transforms fuzzy nonlinear equations with - into crisp nonlinear systems;
- An implementation of one of the known numerical techniques in principle 2.
2. Preliminaries
3. Solving Fuzzy Nonlinear Equations and Error Analysis
- All coefficients of the nonlinear equation except the crisp coefficients are quasi-triangular fuzzy numbers;
- At least one coefficient of the nonlinear equation is pseudo-trapezoidal.
3.1. All Coefficients of the Nonlinear Equation except the Crisp Coefficients Are Quasi-Triangular Fuzzy Numbers
3.2. At Least One Coefficient of the Nonlinear Equation Is a Pseudo-Trapezoidal Fuzzy Number
3.3. Error Analysis
- Input data error;
- Rounding error;
- Approximate error.
4. Illustrative Examples
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbasbandy, S.; Asady, B. Newton’s method for solving fuzzy nonlinear equations. Appl. Math. Comput. 2004, 159, 349–356. [Google Scholar] [CrossRef]
- Sulaiman, I.M.; Mamat, M.; Malik, M.; Nisar, K.S.; Elfasakhany, A. Performance analysis of a modified Newton method for parameterized dual fuzzy nonlinear equations and its application. Results Phys. 2022, 33, 105140. [Google Scholar] [CrossRef]
- Kajani, M.T.; Asady, B.; Vencheh, A.H. An iterative method for solving dual fuzzy nonlinear equations. Appl. Math. Comput. 2005, 167, 316–323. [Google Scholar] [CrossRef]
- Waziri, M.Y.; Moyi, A.U. An alternative approach for solving dual fuzzy nonlinear equations. Int. J. Fuzzy Syst. 2016, 18, 103–107. [Google Scholar] [CrossRef]
- Sulaiman, I.M.; Mamat, M.; Mohamed, M.A.; Waziri, M.Y. Diagonal Updating Shamasnkii-Like method for Solving Fuzzy Nonlinear Equation. Far East J. Math Sci. 2018, 103, 1619–1629. [Google Scholar]
- Sulaiman, I.M.; Mamat, M.; Waziri, M.Y.; Mohamed, M.A.; Mohamad, F.S. Solving fuzzy nonlinear equation via Levenberg-Marquardt method. Far East J. Math Sci. 2018, 103, 1547–1558. [Google Scholar] [CrossRef]
- Ramli, A.; Abdullah, M.L.; Mamat, M. Broyden’s method for solving fuzzy nonlinear equations. Adv. Fuzzy Syst. 2010, 2010, 763270. [Google Scholar] [CrossRef]
- Saha, G.K.; Shirin, S. A new approach to solve fuzzy non-linear equations using fixed point iteration algorithm. GANIT J. Bangladesh Math. Soc. 2012, 32, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, L.S.; Ganesan, K. Solving fuzzy nonlinear equation using harmonic mean method. Int. J. Sci. Eng. Res. 2015, 6, 229–232. [Google Scholar]
- Sulaiman, I.M.; Mamat, M.; Waziri, M.Y.; Fadhilah, A.; Kamfa, K.U. Regula Falsi method for solving fuzzy nonlinear equation. Far East J. Math Sci. 2016, 100, 873–884. [Google Scholar] [CrossRef]
- Kelley, C.T. Iterative Methods for Linear and Nonlinear Equations; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1995. [Google Scholar]
- Kelley, C.T. A Shamanskii-like acceleration scheme for nonlinear equations at singular roots. Math. Comput. 1986, 47, 609–623. [Google Scholar]
- Akram, M.; Muhammad, G.; Allahviranloo, T.; Ali, G. A solving method for two-dimensional homogeneous system of fuzzy fractional differential equations. AIMS Math. 2023, 8, 228–263. [Google Scholar] [CrossRef]
- Boukezzoula, R.; Jaulin, L.; Coquin, D. A new methodology for solving fuzzy systems of equations: Thick fuzzy sets based approach. Fuzzy Sets Syst. 2022, 435, 107–128. [Google Scholar] [CrossRef]
- Biacino, L.; Lettieri, A. Equations with fuzzy numbers. Inf. Sci. 1989, 47, 63–76. [Google Scholar] [CrossRef]
- Buckley, J.J. Solving fuzzy equations. Fuzzy Sets Syst. 1992, 50, 1–14. [Google Scholar] [CrossRef]
- Buckley, J.J.; Qu, Y. Solving linear and quadratic fuzzy equations. Fuzzy Sets Syst. 1990, 38, 43–59. [Google Scholar] [CrossRef]
- Buckley, J.J.; Eslami, E.; Hayashi, Y. Solving fuzzy equations using neural nets. Fuzzy Sets Syst. 1997, 86, 271–278. [Google Scholar] [CrossRef]
- Buckley, J.J.; Feuring, T.; Hayashi, Y. Solving fuzzy equations using evolutionary algorithms and neural nets. Soft Comput. 2002, 6, 116–123. [Google Scholar] [CrossRef]
- Hajighasemi, S.; Khorasani, S.M. Numerical solution of algebraic fuzzy equations by Adomian method. Appl. Math. Sci. 2010, 4, 3509–3514. [Google Scholar]
- Fayyaz Behrouz, R.; Amirfakhrian, M. Numerical method for the solution of algebraic fuzzy complex equations. Comput. Methods Differ. Equ. 2022, 10, 77–92. [Google Scholar]
- Jafari, R.; Yu, W.; Razvarz, S.; Gegov, A. Numerical methods for solving fuzzy equations: A survey. Fuzzy Sets Syst. 2021, 404, 1–22. [Google Scholar] [CrossRef]
- Jafarian, A.; Jafari, R.; Golmankhaneh, A.K.; Baleanu, D. Solving fully fuzzy polynomials using feed-back neural networks. Int. J. Comput. Math. 2015, 92, 742–755. [Google Scholar] [CrossRef]
- Jiang, H.B. The approach to solving simultaneous linear equations that coefficients are fuzzy numbers. J. Nat. Univ. Def. Technol. (Chin.) 1986, 3, 96–102. [Google Scholar]
- Amirfakhrian, M. Numerical solution of algebraic fuzzy equations with crisp variable by Gauss Newton method. Appl. Math. Model. 2008, 32, 1859–1868. [Google Scholar] [CrossRef]
- Amirfakhrian, M. An iterative Gauss-Newton method to solve an algebraic fuzzy equation with crisp coefficients. J. Intell. Fuzzy Syst. 2011, 22, 207–216. [Google Scholar] [CrossRef]
- Khorasani, S.M.; Aghcheghloo, M.D. Solving fuzzy nonlinear equation with secand method. Int. J. Algebra 2011, 5, 295–299. [Google Scholar]
- Sanchez, E. Solution of fuzzy equations with extended operations. Fuzzy Sets Syst. 1984, 12, 237–248. [Google Scholar] [CrossRef]
- Akram, M.; Muhammad, G.; Allahviranloo, T.; Pedrycz, W. Solution of initial-value problem for linear third-order fuzzy differential equations. Comput. Appl. Math. 2022, 41, 398. [Google Scholar] [CrossRef]
- Akram, M.; Muhammad, G.; Ahmad, D. Analytical solution of the Atangana Baleanu Caputo fractional differential equations using Pythagorean fuzzy sets. Granul. Comput. 2023. [Google Scholar] [CrossRef]
- Akram, M.; Muhammad, G. Analysis of incommensurate multi-order fuzzy fractional differential equations under strongly generalized fuzzy Caputo’s differentiability. Granul. Comput. 2022, 1–17. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Perfilieva, I.; Abbasi, F. A new attitude coupled with fuzzy thinking for solving fuzzy equations. Soft Comput. 2018, 22, 3077–3095. [Google Scholar] [CrossRef]
- Akram, M.; Muhammad, G.; Allahviranloo, T.; Ali, G. New analysis of fuzzy fractional Langevin differential equations in Caputo’s derivative sense. AIMS Math. 2022, 7, 18467–18496. [Google Scholar] [CrossRef]
- Wasowski, J. On solution of fuzzy equations. Control Cybern. 1997, 26, 653–658. [Google Scholar]
- Akram, M.; Ihsan, T.; Allahviranloo, T.; Al-Shamiri, M.M.A. Analysis on determining the solution of fourth-order fuzzy initial value problem with Laplace operator. Math. Biosci. Eng. 2022, 19, 11868–11902. [Google Scholar] [CrossRef]
- Zhao, R.; Govind, R. Solutions of algebraic equations involving generalized fuzzy numbers. Inf. Sci. 1991, 56, 199–243. [Google Scholar] [CrossRef]
- Abbasi, F.; Allahviranloo, T.; Abbasbandy, S. A new attitude coupled with fuzzy thinking to fuzzy rings and fields. J. Intell. Fuzzy Syst. 2015, 29, 851–861. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Abbasi, F.; Allahviranloo, T. Computational procedure for solving fuzzy equations. Soft Comput. 2021, 25, 2703–2717. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, F.; Allahviranloo, T.; Akram, M. A New Framework for Numerical Techniques for Fuzzy Nonlinear Equations. Axioms 2023, 12, 222. https://doi.org/10.3390/axioms12020222
Abbasi F, Allahviranloo T, Akram M. A New Framework for Numerical Techniques for Fuzzy Nonlinear Equations. Axioms. 2023; 12(2):222. https://doi.org/10.3390/axioms12020222
Chicago/Turabian StyleAbbasi, Fazlollah, Tofigh Allahviranloo, and Muhammad Akram. 2023. "A New Framework for Numerical Techniques for Fuzzy Nonlinear Equations" Axioms 12, no. 2: 222. https://doi.org/10.3390/axioms12020222
APA StyleAbbasi, F., Allahviranloo, T., & Akram, M. (2023). A New Framework for Numerical Techniques for Fuzzy Nonlinear Equations. Axioms, 12(2), 222. https://doi.org/10.3390/axioms12020222