C-R Immersions and Sub-Riemannian Geometry
Abstract
:1. Introduction
2. Sub-Riemannian Techniques in CR Geometry
2.1. CR Structures and Pseudohermitian Geometry
2.2. Sub-Riemannian Geometry
2.3. -Contractions
2.4. Gradients and the Laplace–Beltrami Operator on
- (i)
- There exist and such that and is constant on [where ],
- (ii)
- The set is nonempty.
2.5. Curvature Properties
3. First Fundamental Forms
4. Pseudohermitian Immersions
- (i)
- f is isopseudohermitian, i.e., ,
- (ii)
- .
- (i)
- f is a pseudohermitian immersion.
- (ii)
- .
- (iii)
- .
- (iv)
- .
5. Gauss and Weingarten Formulas
6. Gauss–Ricci–Codazzi Equations
7. The Projections and
8. Gauss Formula for
- (ii)
- is -bilinear.
- (iii)
- a is -bilinear.
- (iv)
- is a connection in the vector bundle .
- (v)
- For any and any .
9. Relating to
10. Gauss Equation for
- (i)
- .
- (ii)
- .
- (iii)
- .
11. CR Immersions into Spheres
11.1. Mean Curvature
11.2. On a Theorem by S-S. Chern
12. Final Comments and Open Problems
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Webster, S.M. Pseudohermitian structures on a real hypersurface. J. Differ. Geom. 1978, 13, 25–41. [Google Scholar]
- Tanaka, N. A Differential Geometric Study on Strongly Pseudo-Convex Manifolds; Lectures in Mathematics; Department of Mathematics, Kyoto University: Tokyo, Japan, 1975. [Google Scholar]
- Dragomir, S.; Tomassini, G. Differential Geometry and Analysis on CR Manifolds; Progress in Mathematics; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2006; Volume 246. [Google Scholar]
- Barletta, E.; Dragomir, S.; Duggal, K.L. Foliations in Cauchy-Riemann Geometry; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2007; Volume 140. [Google Scholar]
- Dragomir, S.; Perrone, D. Harmonic Vector Fields: Variational Principles and Differential Geometry; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Barletta, E.; Dragomir, S. Jacobi fields of the Tanaka–Webster connection on Sasakian manifolds. Kodai Math. J. 2006, 29, 406–454. [Google Scholar] [CrossRef]
- D’Angelo, J.P.; Tyson, J.T. An invitation to Cauchy-Riemann and sub-Riemannian geometries. Not. Am. Math. Soc. 2010, 57, 208–219. [Google Scholar]
- Strichartz, R.C. Sub-Riemannian geometry. J. Differ. Geom. 1986, 24, 221–263. [Google Scholar] [CrossRef]
- Do Carmo, M.P. Differential Geometry of Curves and Surfaces; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1976. [Google Scholar]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Interscience Publishers: New York, NY, USA, 1963; Volume I, 1968; Volume II. [Google Scholar]
- Webster, S.M. The Rigidity of C-R Hypersurfaces in a Sphere. Indiana Univ. Math. J. 1979, 28, 405–416. [Google Scholar] [CrossRef]
- Ebenfelt, P.; Huang, X.; Zaitsev, D. Rigidity of CR-immersions into Spheres. Commun. Anal. Geom. 2004, 12, 631–670. [Google Scholar] [CrossRef]
- Lamel, B. A reflection principle for real-analytic submanifolds of complex spaces. arXiv 1999, arXiv:9904118. [Google Scholar] [CrossRef]
- Lamel, B. Holomorphic maps of real submanifolds in complex spaces of different dimensions. Pac. J. Math. 2001, 201, 357–387. [Google Scholar] [CrossRef]
- Dragomir, S. Pseudohermitian immersions between strictly pseudoconvex CR manifolds. Am. J. Math. 1995, 117, 169–202. [Google Scholar] [CrossRef]
- Spallek, K. MR1314462. Math. Rev. 1996, 97, 32008. [Google Scholar]
- Dragomir, S.; Minor, A. CR immersions and Lorentzian geometry Part I: Pseudohermitian rigidity of CR immersions. Ric. Mat. 2013, 62, 229–263. [Google Scholar] [CrossRef]
- Dragomir, S.; Minor, A. CR immersions and Lorentzian geometry. Part II: A Takahashi type theorem. Ric. Mat. 2014, 63, 15–39. [Google Scholar] [CrossRef]
- Dragomir, S. Cauchy-Riemann geometry and subelliptic theory. Lect. Notes Semin. Interdiscip. Mat. 2008, VII, 121–160. [Google Scholar]
- Chen, B.-Y. Geometry of Submanifolds; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
- Chern, S.-S. Minimal surfaces in an Euclidean space of n dimensions. In Symposium Differential and Combinatorial Topology in Honor of Marston Morse; Princeton University Press: Princeton, NJ, USA, 1965; pp. 187–198. [Google Scholar]
- Bott, R.; Tu, L.W. Differential Forms in Algebraic Topology; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- D’Angelo, J.P. Several Complex Variables and the Geometry of Real Hypersurfaces; Studies in Advanced Mathematics; CRC Press: Boca Raton, FL, USA, 1993; 272p. [Google Scholar]
- Lewy, H. An example of a smooth linear partial differential equation without solution. Ann. Math. 1957, 66, 155–158. [Google Scholar] [CrossRef]
- Barletta, E.; Dragomir, S. Sublaplacians on CR manifolds. Bull. Math. Soc. Sci. Math. Roum. 2009, 52, 3–32. [Google Scholar]
- Hörmander, L. Hypoelliptic second-order differential equations. Acta Math. 1967, 119, 147–171. [Google Scholar] [CrossRef]
- Barletta, E. On the pseudohermitian sectional curvature of a strictly pseudoconvex CR manifold. Differ. Geom. Appl. 2007, 25, 612–631. [Google Scholar] [CrossRef]
- Jost, J.; Xu, C.-J. Subelliptic harmonic maps. Trans. Am. Math. Soc. 1998, 350, 4633–4649. [Google Scholar] [CrossRef]
- Shimakura, N. Partial Differential Operators of Elliptic Type; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1992; Volume 99. [Google Scholar]
- Takahashi, T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 1966, 18, 380–385. [Google Scholar] [CrossRef]
- Nash, J. The imbedding problem for Riemannian manifolds. Ann. Math. 1956, 63, 20–63. [Google Scholar] [CrossRef]
- Greene, R.E.; Jacobowitz, H. Analytic isometric embeddings. Ann. Math. 1971, 93, 189–204. [Google Scholar] [CrossRef]
- Alexander, H. Proper holomorphic mappings in ℂn. Indiana Univ. Math. J. 1977, 26, 137–146. [Google Scholar] [CrossRef]
- Faran, J.J. Maps from the two-ball to the three-ball. Invent. Math. 1982, 68, 441–475. [Google Scholar] [CrossRef]
- Barletta, E.; Dragomir, S. Proper holomorphic maps in harmonic map theory. Ann. Mat. 2015, 194, 1469–1498. [Google Scholar] [CrossRef]
- Reiter, M.; Son, D.-N. On CR maps from the sphere into the tube over the future light cone. Adv. Math. 2022, 410, 108743. [Google Scholar] [CrossRef]
- De Fabritiis, C. Differential geometry of Cartan Domains of type four. Rend. Mat. Accad. Lincei 1990, 1, 131–138. [Google Scholar]
- Xiao, M.; Yuan, Y. Holomorphic maps from the complex unit ball to type IV classical domains. J. Math. Pures Appl. 2020, 133, 139–166. [Google Scholar] [CrossRef]
- Li, Y.; Abolarinwa, A.; Alkhaldi, A.H.; Ali, A. Some inequalities of Hardy type related to Witten-Laplace operator on smooth metric measure spaces. Mathematics 2022, 10, 4580. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barletta, E.; Dragomir, S.; Esposito, F. C-R Immersions and Sub-Riemannian Geometry. Axioms 2023, 12, 329. https://doi.org/10.3390/axioms12040329
Barletta E, Dragomir S, Esposito F. C-R Immersions and Sub-Riemannian Geometry. Axioms. 2023; 12(4):329. https://doi.org/10.3390/axioms12040329
Chicago/Turabian StyleBarletta, Elisabetta, Sorin Dragomir, and Francesco Esposito. 2023. "C-R Immersions and Sub-Riemannian Geometry" Axioms 12, no. 4: 329. https://doi.org/10.3390/axioms12040329
APA StyleBarletta, E., Dragomir, S., & Esposito, F. (2023). C-R Immersions and Sub-Riemannian Geometry. Axioms, 12(4), 329. https://doi.org/10.3390/axioms12040329