Partial Sums of the Normalized Le Roy-Type Mittag-Leffler Function
Abstract
:1. Introduction and Preliminaries
- (i)
- If and , then the sequence defined byis decreasing for
- (ii)
- If and , then the sequence defined byis decreasing for
- (i)
- If and , then
- (ii)
- If and , then
- (iii)
- If and , then
2. Special Cases
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittag-Leffler, G.M. Sur la nouvelle fonction E(x). Comptes Rendus Acad. Sci. 1903, 137, 554–558. [Google Scholar]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffer functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef]
- Ahmad, M.; Frasin, B.; Murugusundaramoorthy, G.; Al-khazaleh, A. An application of Mittag–Leffler-type Poisson distribution on certain subclasses of analytic functions associated with conic domains. Heliyon 2021, 7, e08109. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Manohar, P.; Kalla, S.L. A Mittag-Leffler-type function of two variables. Integral Transform. Spec. Funct. 2013, 24, 934–944. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Khan, I.; Andualem, M. New subclass of analytic function related with generalized conic domain associated with q-differential operator. J. Math. 2022, 2022, 1404674. [Google Scholar] [CrossRef]
- Răducanu, D. On partial sums of normalized Mittag-Leffler functions. An. Ştiinţifice. Univ. Ovidius Constanta 2017, 25, 123–133. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F. Some properties of a linear operator involving generalized Mittag-Leffler function. Stud. Univ. Babes-Bolyai Math. 2020, 65, 67–75. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Gerhold, S. Asymptotics for a variant of the Mittag–Leffler function. Integral Transform. Spec. Funct. 2012, 23, 397–403. [Google Scholar] [CrossRef]
- Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integral Transform. Spec. Funct. 2013, 24, 773–782. [Google Scholar] [CrossRef]
- Mehrez, K.; Das, S. On some geometric properties of the Le Roy-type Mittag-Leffler function. Hacet. J. Math. Stat. 2022, 51, 1085–1103. [Google Scholar] [CrossRef]
- Szegö, G. Zur Theorie der schlichten Abbildungen. Math. Ann. 1928, 100, 188–211. [Google Scholar] [CrossRef]
- Robertson, M.S. The partial sums of multivalently starlike functions. Ann. Math. 1941, 42, 829–838. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Springer Science & Business Media: Berlin, Germany, 1983. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner Publishing Company, Inc.: Lexington, VA, USA, 1983; Volume I. [Google Scholar]
- Agrawal, S.; Sahoo, S.K. Radius of convexity of partial sums of functions in the close-to-convex family. Filomat 2017, 31, 3519–3529. [Google Scholar] [CrossRef]
- Ruscheweyh, S. On the radius of univalence of the partial sums of convex functions. Bull. Lond. Math. Soc. 1972, 4, 367–369. [Google Scholar] [CrossRef]
- Sheil-Small, T. A note on the partial sums of convex schlicht functions. Bull. Lond. Math. Soc. 1970, 2, 165–168. [Google Scholar] [CrossRef]
- Iliev, L. Classical extremal problems for univalent functions. In Complex Analysis; Banach Center Publ.: Warsaw, Poland; 11 PWN: Warsaw, Poland, 1979; pp. 89–110. [Google Scholar]
- Ravichandran, V. Geometric properties of partial sums of univalent functions. Math. Newsl. 2012, 22, 208–221. [Google Scholar]
- Silvia, E.M. On partial sums of convex functions of order α. Houst. J. Math. 1985, 11, 397–404. [Google Scholar]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef]
- Orhan, H.; Gunes, E. Neighborhoods and partial sums of analytic functions based on Gaussian hypergeometric functions. Indian J. Math. 2009, 51, 489–510. [Google Scholar]
- Owa, S.; Srivastava, H.M.; Saito, N. Partial sums of certain classes of analytic functions. Int. J. Comput. Math. 2004, 81, 1239–1256. [Google Scholar] [CrossRef]
- Brickman, L.; Hallenbeck, D.J.; MacGregor, T.H.; Wilken, D. Convex hulls and extreme points of families of starlike and convex mappings. Trans. Am. Math. Soc. 1973, 185, 413–428. [Google Scholar] [CrossRef]
- Frasin, B.A. Partial sums of certain analytic and univalent functions. Acta Math. Acad. Paedagog. Nyí RegyháZiensis 2005, 21, 35–145. [Google Scholar] [CrossRef]
- Frasin, B.A.; Murugusundaramoorthy, G. Partial sum of certain analytic functions. Mathematica 2011, 53, 131–142. [Google Scholar]
- Aouf, M.K.; Seoudy, T.M.; El-Hawsh, G.M. Partial sums of certain subclass of meromorphic univalent functions. Int. J. Open Probl. Complex Anal. 2014, 6, 1–7. [Google Scholar]
- Lin, L.J.; Owa, S. On partial sums of the Libera integral operator. J. Math. Anal. Appl. 1997, 213, 444–454. [Google Scholar]
- Çetinkaya, A.; Cotîrlă, L.-I. Quasi-Hadamard Product and Partial Sums for Sakaguchi-Type Function Classes Involving q-Difference Operator. Symmetry. 2022, 14, 709. [Google Scholar] [CrossRef]
- Frasin, B.A. Generalization of partial sums of certain analytic and univalent functions. Appl. Math. Lett. 2008, 21, 735–741. [Google Scholar] [CrossRef]
- Yağmur, N.; Orhan, H. Partial sums of generalized Struve functions. Miskolc. Math. Notes 2016, 17, 657–670. [Google Scholar] [CrossRef]
- Aktaş, I.; Orhan, H. Partial sums of normalized Dini functions. J. Cal. Anal. 2016, 9, 127–135. [Google Scholar] [CrossRef]
- Din, M.; Raza, M.; Yagmur, N.; Malik, S.N. On partial sums of Wright functions. UPB. Sci. Bull. Ser. A 2018, 80, 79–90. [Google Scholar]
- Kazımoğlu, S. Partial sums of the Miller-Ross function. Turk. J. Sci. 2021, 6, 167–173. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frasin, B.A.; Cotîrlă, L.-I. Partial Sums of the Normalized Le Roy-Type Mittag-Leffler Function. Axioms 2023, 12, 441. https://doi.org/10.3390/axioms12050441
Frasin BA, Cotîrlă L-I. Partial Sums of the Normalized Le Roy-Type Mittag-Leffler Function. Axioms. 2023; 12(5):441. https://doi.org/10.3390/axioms12050441
Chicago/Turabian StyleFrasin, Basem Aref, and Luminiţa-Ioana Cotîrlă. 2023. "Partial Sums of the Normalized Le Roy-Type Mittag-Leffler Function" Axioms 12, no. 5: 441. https://doi.org/10.3390/axioms12050441
APA StyleFrasin, B. A., & Cotîrlă, L. -I. (2023). Partial Sums of the Normalized Le Roy-Type Mittag-Leffler Function. Axioms, 12(5), 441. https://doi.org/10.3390/axioms12050441