Some New Sufficient Conditions on p-Valency for Certain Analytic Functions
Abstract
:1. Introduction and Definitions
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hayman, W.K. Multivalent Functions; Cambridge University Press: Cambrige, UK, 1958. [Google Scholar]
- Leach, R.J. Coefficient estimates for certain multivalent functions. Pac. J. Math. 1978, 74, 133–142. [Google Scholar]
- Khan, Q.; Arif, M.; Ahmad, B.; Tang, H. On analytic multivalent functions associated with lemniscate of Bernoulli. AIMS Math. 2020, 5, 2261–2271. [Google Scholar] [CrossRef]
- Alb Lupaş, A. Applications of the q-Sǎlǎgean differential operator involving multivalent functions. Axioms 2022, 11, 512. [Google Scholar] [CrossRef]
- Lashin, A.M.Y.; El-Emam, F.Z. On certain classes of multivalent analytic functions defined with higher-order derivatives. Mathematics 2023, 11, 83. [Google Scholar] [CrossRef]
- Mateljević, M.; Mutavdžić, N.; Örnek, B.N. Note on some classes of holomorphic functions related to Jack’s and Schwarz’s lemma. Appl. Anal. Discret. Math. 2022, 16, 111–131. [Google Scholar] [CrossRef]
- Nunokawa, M.; Sokół, J. On the order of strong starlikeness and the radii of starlikeness for of some close-to-convex functions. Anal. Math. Phys. 2019, 9, 2367–2378. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Arif, M.; Iqbal, J.; Ullah, K.; Ghufran, S.M. Sharp bounds of Hankel determinant on logarithmic coefficients for functions starlike with exponential function. Fractal Fract. 2022, 6, 645. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Ihsan, M. Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential function. Mathematics 2022, 10, 3429. [Google Scholar] [CrossRef]
- Ronning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roumaine Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Mateljević, M. Schwarz lemma and Kobayashi metrics for harmonic and holomorphic functions. J. Math. Anal. Appl. 2018, 464, 78–100. [Google Scholar] [CrossRef]
- Khalfallah, A.; Mateljević, M.; Purtić, B. Schwarz–Pick Lemma for harmonic and Hyperbolic harmonic functions. Results Math. 2022, 77, 167. [Google Scholar] [CrossRef]
- Mateljević, M.; Mutavdžić, N. The boundary Schwarz lemma for harmonic and pluriharmonic mappings and some generalizations. Bull. Malays. Math. Sci. Soc. 2022, 45, 3177–3195. [Google Scholar] [CrossRef]
- Nunokawa, M. On the order of strongly starlikeness of strongly convex functions. Proc. Jp. Acad. Ser. A 1993, 69, 234–237. [Google Scholar] [CrossRef]
- Arif, M.; Ayaz, M.; Iqbal, J.; Haq, W. Sufficient conditions for functions to be in a class of p-valent analytic functions. J. Comput. Anal. Appl. 2013, 16, 159–164. [Google Scholar]
- Arif, M. Sufficiency criteria for a class of p-valent analytic functions of complex order. Abstr. Appl. Anal. 2013, 2013, 517296. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.E.; Aouf, M.K.; Srivastava, R. The principle of differential subordination and its application to analytic and p-valent functions defined by a generalized fractional differintegral operator. Symmetry 2019, 11, 1083. [Google Scholar] [CrossRef] [Green Version]
- Hadid, S.B.; Ibrahim, R.W.; Momani, S. Multivalent functions and differential operator extended by the quantum calculus. Fractal Fract. 2022, 6, 354. [Google Scholar] [CrossRef]
- Warschawski, S. On the higher derivatives at the boundary in conformal mappings. Trans. Am. Math. Soc. 1935, 38, 310–340. [Google Scholar] [CrossRef]
- Noshiro, K. On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ. 1934, 1, 129–155. [Google Scholar] [CrossRef]
- Ozaki, S. On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku A 1935, 2, 167–188. [Google Scholar]
- Nunokawa, M.; Sokół, J. On the multivalency of certain analytic functions. J. Ineq. Appl. 2014, 2014, 357. [Google Scholar] [CrossRef] [Green Version]
- Nunokawa, M.; Sokół, J. On some geometric properties of multivalent functions. J. Ineq. Appl. 2015, 2015, 300. [Google Scholar] [CrossRef] [Green Version]
- Nunokawa, M.; Cho, N.E.; Kwon, O.S.; Sokół, J. An improvement of Ozaki’s q-valent conditions. Acta Math. Sin. Engl. Ser. 2016, 32, 406–410. [Google Scholar] [CrossRef]
- Nunokawa, M.; Sokół, J.; Trojnar-Spelina, L. On a sufficient condition for function to be p-valent close-to-convex. Ramanujan J. 2020, 53, 483–492. [Google Scholar] [CrossRef]
- Nunokawa, M. On properties of non-Carathéodory functions. Proc. Jpn. Acad. Ser. A 1992, 68, 152–153. [Google Scholar] [CrossRef]
- Nunokawa, M. On the theory of multivalent functions. Tsukuba J. Math. 1987, 11, 273–286. [Google Scholar] [CrossRef]
- Nunokawa, M. A note on multivalent functions. Tsukuba J. Math. 1989, 1, 453–455. [Google Scholar] [CrossRef]
- Khan, Q.; Dziok, J.; Raza, M.; Arif, M. Sufficient conditions for p-valent functions. Math. Slovaca 2021, 71, 1089–1102. [Google Scholar] [CrossRef]
- Cotîrlǎ, L.I.; Juma, A.R.S. Properties of differential subordination and superordination for multivalent functions associated with the convolution operators. Axioms 2023, 12, 169. [Google Scholar] [CrossRef]
- Liu, J.L.; Srivastava, R. Hadamard products of certain classes of p-valent starlike functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 2001–2015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Arif, M.; Bukhari, S.Z.H.; Raza, M.A. Some New Sufficient Conditions on p-Valency for Certain Analytic Functions. Axioms 2023, 12, 295. https://doi.org/10.3390/axioms12030295
Shi L, Arif M, Bukhari SZH, Raza MA. Some New Sufficient Conditions on p-Valency for Certain Analytic Functions. Axioms. 2023; 12(3):295. https://doi.org/10.3390/axioms12030295
Chicago/Turabian StyleShi, Lei, Muhammad Arif, Syed Zakar Hussain Bukhari, and Malik Ali Raza. 2023. "Some New Sufficient Conditions on p-Valency for Certain Analytic Functions" Axioms 12, no. 3: 295. https://doi.org/10.3390/axioms12030295
APA StyleShi, L., Arif, M., Bukhari, S. Z. H., & Raza, M. A. (2023). Some New Sufficient Conditions on p-Valency for Certain Analytic Functions. Axioms, 12(3), 295. https://doi.org/10.3390/axioms12030295