Distance and Similarity Measures of Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Matrices and Their Applications to Data Classification in Supervised Learning
Abstract
:1. Introduction
- ✓
- Defining the concepts metrics, quasi-, semi-, and pseudo-metrics and similarities, quasi-, semi-, and pseudo-similarities over ifpifs-matrices.
- ✓
- Proposing five pseudo-metrics and seven pseudo-similarities.
- ✓
- Developing a new classifier, i.e., Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Classifier (IFPIFSC), with the best scores.
- ✓
- Applying IFPIFSC to real-life classification problems successfully.
2. Preliminaries
- i. For all i and j, if and , then it is said to be and are equal ifpifs-matrices and denoted by .
- ii. For all i and j, if and , then it is said to be is a submatrix of and denoted by .
- iii. If and , then it is said to be is a proper submatrix of and denoted by .
3. Distance and Similarity Measures of ifpifs-Matrices
3.1. Distance Measures of ifpifs-Matrices
- D1.
- (Positive semi-definiteness);
- D2.
- ;
- D3.
- ;
- D4.
- (Symmetry);
- D5.
- (Triangle inequality).
- i. d is called a quasi-metric iff d satisfies D1, D3, and D5.
- ii. d is called a semi-metric iff d satisfies D1, D3, and D4.
- iii. d is called a pseudo-metric iff d satisfies D2, D4, and D5.
- iv. d is called a metric iff d satisfies D3, D4, and D5.
- i. ,
- ii. ,
- iii. ,
- iv. ,
- v. .
3.2. Similarity Measures of ifpifs-Matrices
- S1.
- ,
- S2.
- ,
- S3.
- ,
- S4.
- .
- i. s is called a similarity iff d satisfies S2, S3, and S4.
- ii. s is called a quasi-similarity iff d satisfies S2 and S4.
- iii. s is called a semi-similarity iff d satisfies S2 and S3.
- iv. s is called a pseudo-similarity iff d satisfies S1, S3, and S4.
- i. ,
- ii. ,
- iii. ,
- iv. ,
- v. ,
- vi. .
4. Proposed Classifier (IFPIFSC)
Algorithm 1 IFPIFSC’s pseudocode |
Input: , , , , and Output:
|
5. Simulation and Performance Comparison
5.1. UCI Datasets and Features
5.2. Performance Metrics
5.3. Simulation Results
5.4. Statistical Evaluation
5.5. Comparison of the Time Complexity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
fpfs-set [7] | Fuzzy Parameterized Fuzzy Soft Set |
fpfs-matrix [8] | Fuzzy Parameterized Fuzzy Soft Matrix |
ifs-set [17] | Intuitionistic Fuzzy Soft Set |
ifps-set [18] | Intuitionistic Fuzzy Parameterized Soft Set |
ifpfs-set [19] | Intuitionistic Fuzzy Parameterized Fuzzy Soft Set |
ifpifs-set [20] | Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Set |
ifpifs-matrix [21] | Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Matrix |
SDM | Soft Decision-Making |
kNN [59,60] | k-Nearest Neighbor |
Fuzzy kNN [23] | Fuzzy k-Nearest Neigbors |
FSSC [24] | Fuzzy Soft Set Classifier |
FussCyier [25] | Fuzzy Soft Set Classifier Using Distance-Based Similarity Measure |
HDFSSC [26] | Hamming Distance-Based Fuzzy Soft Set Classifier |
FPFSCC [10] | Fuzzy Parameterized Fuzzy Soft Chebyshev Classifier |
FPFSNHC [9] | Fuzzy Parameterized Fuzzy Soft Normalized Hamming Classifier |
FPFS-EC [11] | Fuzzy Parameterized Fuzzy Soft Euclidean Classifier |
FPFS-CMC [12] | Comparison Matrix-Based Fuzzy Parameterized Fuzzy Soft Classifier |
FPFS-AC [13] | Fuzzy Parameterized Fuzzy Soft Aggregation Classifier |
FPFS-kNN [14] | Fuzzy Parameterized Fuzzy Soft k-Nearest Neighbor |
SVM [27] | Support Vector Machines |
DT [28] | Decision Trees |
BT [29] | Boosting Trees |
AdaBoost [31] | Adaptive Boosting |
RF [30] | Random Forests |
IFPIFSC (In this paper) | Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Classifier |
UCI-MLR [22] | UC Irvine Machine Learning Repository |
Acc | Accuracy |
Pre | Precision |
Rec | Recall |
MacF | Macro F-score |
MicF | Micro F-score |
References
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Wu, H.C. Mathematical Foundations of Fuzzy Sets; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar]
- Molodtsov, D. Soft set theory—First results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
- Molodtsov, D.A. Soft Set Theory; URSS: Moscow, Russia, 2004. (In Russian) [Google Scholar]
- Maji, P.K.; Biswas, R.; Roy, A.R. Soft set theory. Comput. Math. Appl. 2003, 45, 555–562. [Google Scholar] [CrossRef]
- Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
- Çağman, N.; Çıtak, F.; Enginoğlu, S. Fuzzy parameterized fuzzy soft set theory and its applications. Turk. J. Fuzzy Syst. 2010, 1, 21–35. [Google Scholar]
- Enginoğlu, S.; Çağman, N. Fuzzy parameterized fuzzy soft matrices and their application in decision-making. TWMS J. Apl. Eng. Math. 2020, 10, 1105–1115. [Google Scholar]
- Memiş, S.; Enginoğlu, S.; Erkan, U. A data classification method in machine learning based on normalised Hamming pseudo-similarity of fuzzy parameterized fuzzy soft matrices. Bilge Int. J. Sci. Technol. Res. 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Memiş, S.; Enginoğlu, S. An Application of Fuzzy Parameterized Fuzzy Soft Matrices in Data Classification. In Proceedings of the International Conferences on Natural Sciences and Technology, Prizren, Kosovo, 26–30 August 2019; Kılıç, M., Özkan, K., Karaboyacı, M., Taşdelen, K., Kandemir, H., Beram, A., Eds.; University of Prizren: Prizren, Kosovo, 2019; pp. 68–77. [Google Scholar]
- Memiş, S.; Enginoğlu, S.; Erkan, U. Numerical data classification via distance-based similarity measures of fuzzy parameterized fuzzy soft matrices. IEEE Access 2021, 9, 88583–88601. [Google Scholar] [CrossRef]
- Memiş, S.; Enginoğlu, S.; Erkan, U. A classification method in machine learning based on soft decision-making via fuzzy parameterized fuzzy soft matrices. Soft Comput. 2022, 1165–1180. [Google Scholar] [CrossRef]
- Memiş, S.; Enginoğlu, S.; Erkan, U. A new classification method using soft decision-making based on an aggregation operator of fuzzy parameterized fuzzy soft matrices. Turk. J. Elec. Eng. Comp. Sci. 2022, 30, 871–890. [Google Scholar] [CrossRef]
- Memiş, S.; Enginoğlu, S.; Erkan, U. Fuzzy parameterized fuzzy soft k-nearest neighbor classifier. Neurocomputing 2022, 500, 351–378. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.T. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Maji, P.K.; Biswas, R.; Roy, A.R. Intuitionistic fuzzy soft sets. J. Fuzzy Math. 2001, 9, 677–692. [Google Scholar]
- Deli, İ.; Çağman, N. Intuitionistic fuzzy parameterized soft set theory and its decision making. Appl. Soft Comput. 2015, 28, 109–113. [Google Scholar] [CrossRef]
- El-Yagubi, E.; Salleh, A.R. Intuitionistic fuzzy parameterised fuzzy soft set. J. Qual. Meas. Anal. 2013, 9, 73–81. [Google Scholar]
- Karaaslan, F. Intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets with applications in decision making. Ann. Fuzzy Math. Inform. 2016, 11, 607–619. [Google Scholar]
- Enginoğlu, S.; Arslan, B. Intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices and their application in decision-making. Comput. Appl. Math. 2020, 39, 325. [Google Scholar] [CrossRef]
- Dua, D.; Graff, C. UCI Machine Learning Repository. Intell. Control. Autom. 2019, 10, 4. [Google Scholar]
- Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, 15, 580–585. [Google Scholar] [CrossRef]
- Handaga, B.; Onn, H.; Herawan, T. FSSC: An algorithm for classifying numerical data using fuzzy soft set theory. Int. J. Fuzzy Syst. Appl. 2012, 3, 29–46. [Google Scholar] [CrossRef]
- Lashari, S.A.; Ibrahim, R.; Senan, N. Medical data classification using similarity measure of fuzzy soft set based distance measure. J. Telecommun. Electron. Comput. Eng. 2017, 9, 95–99. [Google Scholar]
- Yanto, I.T.R.; Seadudin, R.R.; Lashari, S.A.; Haviluddin. A Numerical Classification Technique Based on Fuzzy Soft Set using Hamming Distance. In Proceedings of the Third International Conference on Soft Computing and Data Mining, Johor, Malaysia, 6–7 February 2018; Ghazali, R., Deris, M.M., Nawi, N.M., Abawajy, J.H., Eds.; Springer: Johor, Malaysia, 2018; pp. 252–260. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 3rd ed.; CRC Press: Wadsworth, OH, USA, 1998. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 11, 86–92. [Google Scholar] [CrossRef]
- Nemenyi, P.B. Distribution-Free Multiple Comparisons; Princeton University: Princeton, NJ, USA, 1963. [Google Scholar]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Memiş, S.; Arslan, B.; Aydın, T.; Enginoğlu, S.; Camcı, Ç. A classification method based on Hamming pseudo-similarity of intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices. J. New Results Sci. 2021, 10, 59–76. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Dang, M.T.; Luong, A.V.; Liew, A.W.C.; Liang, T.; McCall, J. Multi-label classification via incremental clustering on an evolving data stream. Pattern Recognit. 2019, 95, 96–113. [Google Scholar] [CrossRef]
- Erkan, U. A precise and stable machine learning algorithm: Eigenvalue classification (EigenClass). Neural. Comput. Appl. 2021, 33, 5381–5392. [Google Scholar] [CrossRef]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B Stat. Methodol. 1974, 36, 111–147. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010; p. 672. [Google Scholar]
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Akram, M.; Zafar, F. Soft Rough Fuzzy Graphs. In Hybrid Soft Computing Models Applied to Graph Theory; Springer International Publishing: Cham, Switzerland, 2020; pp. 323–352. [Google Scholar]
- Aydın, T.; Enginoğlu, S. Interval-valued intuitionistic fuzzy parameterized interval-valued intuitionistic fuzzy soft matrices and their application to performance-based value assignment to noise removal filters. Comput. Appl. Math. 2022, 41, 192. [Google Scholar] [CrossRef]
- Cuong, B.C. Picture fuzzy sets. J. Comput. Sci. Cybern. 2014, 30, 409–420. [Google Scholar]
- Memiş, S. Another view on picture fuzzy soft sets and their product operations with soft decision-making. J. New Theory 2022, 38, 1–13. [Google Scholar] [CrossRef]
- Yang, W. New Similarity Measures for Soft Sets and Their Application. Fuzzy Inf. Eng. 2013, 1, 19–25. [Google Scholar] [CrossRef]
- Garg, H.; Deng, Y.; Ali, Z.; Mahmood, T. Decision-making strategy based on Archimedean Bonferroni mean operators under complex Pythagorean fuzzy information. Comp. Appl. Math. 2022, 41, 15240. [Google Scholar] [CrossRef]
- Senapati, T.; Yager, R.R. Fermatean fuzzy sets. J. Ambient. Intell. Human. Comput. 2020, 11, 663–674. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy. Syst. 2017, 25, 1222–1230. [Google Scholar] [CrossRef]
- Farid, H.M.A.; Riaz, M. q-rung orthopair fuzzy Aczel–Alsina aggregation operators with multi-criteria decision-making. Eng. Appl. Artif. Intell. 2023, 122, 106105. [Google Scholar] [CrossRef]
- Mahmood, T.; Ullah, K.; Khan, Q.; Jan, N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural. Comput. Appl. 2019, 31, 7041–7053. [Google Scholar] [CrossRef]
- Farid, H.M.A.; Riaz, M.; Khan, Z.A. T-spherical fuzzy aggregation operators for dynamic decision-making with its application. Alex. Eng. J. 2023, 72, 97–115. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Gorzałczany, M.B. A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 1987, 21, 1–17. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Zhang, W.R. Bipolar Fuzzy Sets and Relations: A Computational Framework for Cognitive Modeling and Multiagent Decision Analysis. In Proceedings of the NAFIPS/IFIS/NASA ’94 First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, The Industrial Fuzzy Control and Intelligent Systems, San Antonio, CA, USA, 18–21 December 1994; pp. 305–309. [Google Scholar]
- Mahmood, T. A novel approach toward bipolar soft sets and their applications. J. Math. 2020, 2020, 4690808. [Google Scholar] [CrossRef]
- Deli, İ.; Karaaslan, F. Bipolar FPSS-tsheory with applications in decision making. Afr. Mat. 2020, 31, 493–505. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.L. Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties; USAF School of Aviation Medicine, Randolph Field: Universal City, TX, USA, 1951. [Google Scholar]
- Cover, T.M.; Hart, P.E. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. 1967, 13, 21–27. [Google Scholar] [CrossRef]
No. | Name | #Instance | #Attribute | #Class | Balanced/Imbalanced |
---|---|---|---|---|---|
1 | Zoo | 101 | 16 | 7 | Imbalanced |
2 | Breast Tissue | 106 | 9 | 6 | Imbalanced |
3 | Teaching Assistant Evaluation | 151 | 5 | 3 | Imbalanced |
4 | Wine | 178 | 13 | 3 | Imbalanced |
5 | Parkinsons[sic] | 195 | 22 | 2 | Imbalanced |
6 | Sonar | 208 | 60 | 2 | Imbalanced |
7 | Seeds | 210 | 7 | 3 | Balanced |
8 | Parkinson Acoustic | 240 | 46 | 2 | Balanced |
9 | Ecoli | 336 | 7 | 8 | Imbalanced |
10 | Leaf | 340 | 14 | 36 | Imbalanced |
11 | Ionosphere | 351 | 34 | 2 | Imbalanced |
12 | Libras Movement | 360 | 90 | 15 | Balanced |
13 | Dermatology | 366 | 34 | 6 | Imbalanced |
14 | Breast Cancer Wisconsin | 569 | 30 | 2 | Imbalanced |
15 | HCV Data | 589 | 12 | 5 | Imbalanced |
16 | Parkinson’s Disease Classification | 756 | 754 | 2 | Imbalanced |
17 | Mice Protein Expression | 1077 | 72 | 8 | Imbalanced |
18 | Semeion Handwritten Digit | 1593 | 265 | 2 | Imbalanced |
19 | Car Evaluation | 1728 | 6 | 4 | Imbalanced |
20 | Wireless Indoor Localization | 2000 | 7 | 4 | Balanced |
Datasets | Classifiers | Acc ± SD | Pre ± SD | Rec ± SD | MacF ± SD | MicF ± SD |
---|---|---|---|---|---|---|
Zoo | Fuzzy 3NN | 97.63 ± 1.42 | 90.41 ± 7.22 | 84.13 ± 10.2 | 92.05 ± 5.77 | 91.77 ± 4.98 |
FSSC | 97.97 ± 1.32 | 90.03 ± 9.13 | 86.56 ± 9.46 | 93.25 ± 4.92 | 93.06 ± 4.51 | |
FussCyier | 97.74 ± 1.42 | 89.39 ± 9.23 | 86.27 ± 9.46 | 92.68 ± 5.21 | 92.26 ± 4.85 | |
HDFSSC | 98.29 ± 1.4 | 91.72 ± 8.15 | 87.45 ± 10.93 | 93.48 ± 5.2 | 94.15 ± 4.79 | |
FPFSCC | 97.17 ± 2.13 | 88.27 ± 10.11 | 82.05 ± 12.41 | 89.22 ± 7.87 | 90.27 ± 7.49 | |
FPFSNHC | 98.29 ± 1.43 | 92 ± 8.53 | 87.17 ± 11.35 | 93.26 ± 5.81 | 94.15 ± 4.9 | |
FPFS-EC | 98.85 ± 1.12 | 94.34 ± 6.98 | 89.86 ± 10.24 | 96.6 ± 4.17 | 96.04 ± 3.88 | |
FPFS-AC | 98.36 ± 1.3 | 91.66 ± 8.15 | 85.9 ± 10.94 | 94.94 ± 5.42 | 94.35 ± 4.49 | |
FPFS-CMC | 98.73 ± 1.48 | 93.81 ± 8.43 | 89.19 ± 12.28 | 96.31 ± 5.2 | 95.64 ± 5.08 | |
FPFS-3NN(P) | 98.22 ± 1.29 | 92.03 ± 7.25 | 86.67 ± 10.38 | 93.17 ± 5.13 | 93.87 ± 4.51 | |
FPFS-3NN(S) | 98.25 ± 1.26 | 92.35 ± 6.81 | 87.1 ± 10.18 | 93.23 ± 5.27 | 93.97 ± 4.38 | |
FPFS-3NN(K) | 98.25 ± 1.26 | 92.35 ± 6.81 | 87.1 ± 10.18 | 93.23 ± 5.27 | 93.97 ± 4.38 | |
IFPIFSC | 98.65 ± 1.23 | 92.79 ± 6.53 | 89.92 ± 8.2 | 96.31 ± 3.69 | 95.35 ± 3.38 | |
Breast Tissue | Fuzzy 3NN | 84.37 ± 2.73 | 56.35 ± 9.71 | 51.64 ± 8.92 | 57.4 ± 7.04 | 53.1 ± 8.18 |
FSSC | 87.83 ± 2.88 | 64.48 ± 10.14 | 61.95 ± 8.99 | 66.11 ± 7.27 | 63.48 ± 8.65 | |
FussCyier | 87.19 ± 2.97 | 64.15 ± 9.11 | 60.34 ± 9.26 | 64.79 ± 6.92 | 61.58 ± 8.91 | |
HDFSSC | 87.73 ± 3 | 67.57 ± 9.55 | 62.07 ± 9.08 | 64.47 ± 8.27 | 63.2 ± 9 | |
FPFSCC | 87.29 ± 2.65 | 63.77 ± 10.12 | 60.17 ± 8.76 | 67.03 ± 9.22 | 61.87 ± 7.95 | |
FPFSNHC | 87.89 ± 3.23 | 66.78 ± 10.22 | 62.41 ± 10.49 | 66.32 ± 7.89 | 63.66 ± 9.69 | |
FPFS-EC | 88.11 ± 2.74 | 65.95 ± 7.98 | 63.15 ± 8.84 | 70.24 ± 8.51 | 64.33 ± 8.23 | |
FPFS-AC | 89.58 ± 2.66 | 69.54 ± 8.57 | 68.05 ± 8.31 | 71.32 ± 7.91 | 68.75 ± 7.98 | |
FPFS-CMC | 87.82 ± 2.86 | 66.36 ± 8.3 | 62.67 ± 8.98 | 69.26 ± 8.6 | 63.47 ± 8.59 | |
FPFS-3NN(P) | 88.61 ± 2.51 | 65.99 ± 7.5 | 64.44 ± 8.14 | 69.99 ± 7.87 | 65.83 ± 7.54 | |
FPFS-3NN(S) | 88.01 ± 2 | 64.35 ± 5.82 | 62.53 ± 6.52 | 69.23 ± 6.3 | 64.03 ± 6.01 | |
FPFS-3NN(K) | 87.76 ± 2.2 | 63.65 ± 6.44 | 61.84 ± 7.16 | 68.6 ± 5.97 | 63.27 ± 6.6 | |
IFPIFSC | 91.39 ± 2.91 | 75.66 ± 9.25 | 73.18 ± 9.1 | 73.97 ± 8.64 | 74.16 ± 8.73 | |
Teaching Assistant Evaluation | Fuzzy 3NN | 72.06 ± 5.53 | 59.99 ± 8.74 | 58.06 ± 8.36 | 57.23 ± 8.83 | 58.08 ± 8.3 |
FSSC | 63.6 ± 4.17 | 49.63 ± 13.36 | 45.98 ± 6.28 | 43.62 ± 6.25 | 45.41 ± 6.25 | |
FussCyier | 63.69 ± 4.33 | 49.43 ± 12.15 | 46.09 ± 6.47 | 43.33 ± 6.56 | 45.53 ± 6.49 | |
HDFSSC | 69.37 ± 4.66 | 55.55 ± 7.82 | 54.2 ± 7.07 | 53.37 ± 7.17 | 54.06 ± 6.99 | |
FPFSCC | 69.12 ± 5.83 | 54.57 ± 9.52 | 53.77 ± 8.73 | 52.49 ± 9.16 | 53.68 ± 8.75 | |
FPFSNHC | 60.86 ± 4.75 | 47.85 ± 14.61 | 41.84 ± 7.21 | 39.41 ± 6.38 | 41.3 ± 7.13 | |
FPFS-EC | 75.53 ± 5.42 | 64.65 ± 9.06 | 63.2 ± 8.24 | 62.67 ± 8.51 | 63.29 ± 8.13 | |
FPFS-AC | 75.75 ± 4.67 | 64.96 ± 7.6 | 63.6 ± 6.96 | 62.9 ± 7.29 | 63.63 ± 7.01 | |
FPFS-CMC | 75.62 ± 4.75 | 64.92 ± 7.88 | 63.41 ± 7.08 | 62.7 ± 7.39 | 63.43 ± 7.12 | |
FPFS-3NN(P) | 72.44 ± 5.48 | 59.41 ± 9.17 | 58.48 ± 8.34 | 57.54 ± 8.68 | 58.66 ± 8.22 | |
FPFS-3NN(S) | 72.39 ± 5.07 | 58.98 ± 8.43 | 58.39 ± 7.7 | 57.5 ± 7.97 | 58.58 ± 7.61 | |
FPFS-3NN(K) | 72.3 ± 5.19 | 58.86 ± 8.64 | 58.26 ± 7.88 | 57.37 ± 8.19 | 58.45 ± 7.79 | |
IFPIFSC | 75.65 ± 4.48 | 64.43 ± 7.28 | 63.31 ± 6.78 | 62.6 ± 6.91 | 63.47 ± 6.72 | |
Wine | Fuzzy 3NN | 82.24 ± 4.86 | 73.79 ± 7.79 | 72.06 ± 7.39 | 72.22 ± 7.54 | 73.36 ± 7.3 |
FSSC | 96.26 ± 2.39 | 94.88 ± 3.1 | 95.3 ± 2.99 | 94.63 ± 3.46 | 94.38 ± 3.58 | |
FussCyier | 96.44 ± 2.21 | 94.97 ± 3.1 | 95.42 ± 2.89 | 94.91 ± 3.19 | 94.66 ± 3.31 | |
HDFSSC | 95.36 ± 2.66 | 93.49 ± 3.7 | 93.84 ± 3.61 | 93.35 ± 3.84 | 93.03 ± 3.99 | |
FPFSCC | 92.43 ± 2.53 | 89.31 ± 3.6 | 89.99 ± 3.4 | 88.89 ± 3.79 | 88.65 ± 3.8 | |
FPFSNHC | 95.54 ± 2.82 | 93.79 ± 3.74 | 94.41 ± 3.53 | 93.47 ± 4.23 | 93.31 ± 4.24 | |
FPFS-EC | 97.64 ± 1.69 | 96.59 ± 2.42 | 97.04 ± 2.1 | 96.61 ± 2.45 | 96.46 ± 2.53 | |
FPFS-AC | 95.87 ± 3.02 | 94.62 ± 3.45 | 94.82 ± 3.82 | 94.11 ± 4.42 | 93.81 ± 4.52 | |
FPFS-CMC | 97.22 ± 2.64 | 96.15 ± 3.51 | 96.52 ± 3.31 | 96 ± 3.9 | 95.84 ± 3.96 | |
FPFS-3NN(P) | 97.19 ± 2.15 | 96.03 ± 2.94 | 96.46 ± 2.72 | 95.93 ± 3.13 | 95.79 ± 3.22 | |
FPFS-3NN(S) | 97.3 ± 2.28 | 96.25 ± 2.98 | 96.61 ± 2.87 | 96.13 ± 3.25 | 95.95 ± 3.42 | |
FPFS-3NN(K) | 96.74 ± 2.54 | 95.59 ± 3.1 | 95.91 ± 3.2 | 95.34 ± 3.59 | 95.11 ± 3.8 | |
IFPIFSC | 98.24 ± 1.71 | 97.65 ± 2.12 | 97.79 ± 2.16 | 97.56 ± 2.36 | 97.36 ± 2.57 | |
Parkinsons[sic] | Fuzzy 3NN | 85.38 ± 4.25 | 81.81 ± 6.39 | 78.34 ± 6.89 | 79.19 ± 6.29 | 85.38 ± 4.25 |
FSSC | 73.79 ± 6.35 | 72.76 ± 4.16 | 79.88 ± 5.09 | 71.49 ± 5.98 | 73.79 ± 6.35 | |
FussCyier | 73.9 ± 6.44 | 73.25 ± 3.95 | 80.51 ± 4.79 | 71.73 ± 6.01 | 73.9 ± 6.44 | |
HDFSSC | 78.21 ± 6.16 | 75.13 ± 5.07 | 82.04 ± 5.57 | 75.41 ± 6.11 | 78.21 ± 6.16 | |
FPFSCC | 74.92 ± 6.14 | 68.07 ± 8.01 | 70.61 ± 10.07 | 68.22 ± 8.38 | 74.92 ± 6.14 | |
FPFSNHC | 73.9 ± 6.51 | 72.86 ± 4.3 | 79.94 ± 5.16 | 71.58 ± 6.15 | 73.9 ± 6.51 | |
FPFS-EC | 95.85 ± 3.15 | 94.37 ± 4.71 | 95.15 ± 4.12 | 94.48 ± 4.17 | 95.85 ± 3.15 | |
FPFS-AC | 92.97 ± 4.27 | 91.04 ± 5.81 | 90.83 ± 6.1 | 90.56 ± 5.67 | 92.97 ± 4.27 | |
FPFS-CMC | 95.03 ± 3.29 | 92.85 ± 4.62 | 94.67 ± 4.17 | 93.5 ± 4.24 | 95.03 ± 3.29 | |
FPFS-3NN(P) | 94.41 ± 3.8 | 93.31 ± 5.26 | 92.03 ± 5.21 | 92.38 ± 5.01 | 94.41 ± 3.8 | |
FPFS-3NN(S) | 93.95 ± 3.62 | 93.2 ± 5.11 | 90.83 ± 5.59 | 91.6 ± 5.03 | 93.95 ± 3.62 | |
FPFS-3NN(K) | 93.95 ± 3.62 | 93.2 ± 5.11 | 90.83 ± 5.59 | 91.6 ± 5.03 | 93.95 ± 3.62 | |
IFPIFSC | 95.23 ± 3.15 | 93.22 ± 4.51 | 94.99 ± 4.17 | 93.73 ± 4.11 | 95.23 ± 3.15 | |
Sonar | Fuzzy 3NN | 82.5 ± 5.73 | 83.3 ± 5.77 | 82.04 ± 5.89 | 82.15 ± 5.89 | 82.5 ± 5.73 |
FSSC | 74.92 ± 7.5 | 75.5 ± 7.88 | 74.44 ± 7.62 | 74.42 ± 7.7 | 74.92 ± 7.5 | |
FussCyier | 72.12 ± 5.63 | 73.68 ± 5.82 | 72.79 ± 5.66 | 71.94 ± 5.73 | 72.12 ± 5.63 | |
HDFSSC | 69.38 ± 7.7 | 69.75 ± 7.96 | 69.46 ± 7.91 | 69.17 ± 7.82 | 69.38 ± 7.7 | |
FPFSCC | 69.22 ± 6.77 | 69.38 ± 6.92 | 68.95 ± 6.84 | 68.82 ± 6.96 | 69.22 ± 6.77 | |
FPFSNHC | 71.06 ± 5.46 | 72.63 ± 5.63 | 71.76 ± 5.44 | 70.87 ± 5.57 | 71.06 ± 5.46 | |
FPFS-EC | 86.57 ± 4.79 | 87.37 ± 4.69 | 86.22 ± 4.88 | 86.34 ± 4.9 | 86.57 ± 4.79 | |
FPFS-AC | 84.99 ± 5.18 | 86.2 ± 4.96 | 84.47 ± 5.38 | 84.62 ± 5.41 | 84.99 ± 5.18 | |
FPFS-CMC | 85.53 ± 4.78 | 86.33 ± 4.73 | 85.22 ± 4.92 | 85.29 ± 4.92 | 85.53 ± 4.78 | |
FPFS-3NN(P) | 86.77 ± 4.62 | 88.1 ± 4.35 | 86.21 ± 4.83 | 86.42 ± 4.87 | 86.77 ± 4.62 | |
FPFS-3NN(S) | 86.19 ± 4.77 | 87.82 ± 4.48 | 85.56 ± 4.97 | 85.79 ± 5.04 | 86.19 ± 4.77 | |
FPFS-3NN(K) | 86.19 ± 4.77 | 87.82 ± 4.48 | 85.56 ± 4.97 | 85.79 ± 5.04 | 86.19 ± 4.77 | |
IFPIFSC | 86.88 ± 5.15 | 87.83 ± 5.35 | 86.47 ± 5.25 | 86.65 ± 5.26 | 86.88 ± 5.15 | |
Seeds | Fuzzy 3NN | 90.32 ± 3.44 | 87.35 ± 4.44 | 85.48 ± 5.16 | 85.36 ± 5.4 | 85.48 ± 5.16 |
FSSC | 94.1 ± 2.08 | 91.54 ± 2.96 | 91.14 ± 3.12 | 91.08 ± 3.18 | 91.14 ± 3.12 | |
FussCyier | 94.13 ± 2.23 | 91.63 ± 3.14 | 91.19 ± 3.34 | 91.15 ± 3.37 | 91.19 ± 3.34 | |
HDFSSC | 93.17 ± 2.13 | 90.34 ± 3.11 | 89.76 ± 3.2 | 89.76 ± 3.19 | 89.76 ± 3.2 | |
FPFSCC | 90.48 ± 3.32 | 86.35 ± 4.91 | 85.71 ± 4.98 | 85.68 ± 5.02 | 85.71 ± 4.98 | |
FPFSNHC | 93.52 ± 2.46 | 90.92 ± 3.43 | 90.29 ± 3.69 | 90.28 ± 3.71 | 90.29 ± 3.69 | |
FPFS-EC | 93.14 ± 2.59 | 90.18 ± 3.98 | 89.71 ± 3.89 | 89.58 ± 4 | 89.71 ± 3.89 | |
FPFS-AC | 93.49 ± 2.59 | 90.71 ± 3.9 | 90.24 ± 3.89 | 90.11 ± 3.95 | 90.24 ± 3.89 | |
FPFS-CMC | 93.05 ± 2.74 | 90.02 ± 4.03 | 89.57 ± 4.11 | 89.45 ± 4.19 | 89.57 ± 4.11 | |
FPFS-3NN(P) | 92.86 ± 2.38 | 89.82 ± 3.5 | 89.29 ± 3.58 | 89.23 ± 3.61 | 89.29 ± 3.58 | |
FPFS-3NN(S) | 93.02 ± 2.66 | 90.06 ± 3.94 | 89.52 ± 4 | 89.46 ± 4.03 | 89.52 ± 4 | |
FPFS-3NN(K) | 92.79 ± 2.51 | 89.77 ± 3.73 | 89.19 ± 3.76 | 89.14 ± 3.78 | 89.19 ± 3.76 | |
IFPIFSC | 95.49 ± 2.11 | 93.59 ± 3.07 | 93.24 ± 3.17 | 93.19 ± 3.25 | 93.24 ± 3.17 | |
Parkinson Acoustic | Fuzzy 3NN | 75.96 ± 5.94 | 76.71 ± 5.98 | 75.96 ± 5.94 | 75.78 ± 6.01 | 75.96 ± 5.94 |
FSSC | 79.75 ± 5.69 | 80.34 ± 5.56 | 79.75 ± 5.69 | 79.63 ± 5.77 | 79.75 ± 5.69 | |
FussCyier | 80 ± 5.79 | 80.5 ± 5.71 | 80 ± 5.79 | 79.9 ± 5.85 | 80 ± 5.79 | |
HDFSSC | 82.58 ± 4.79 | 83.03 ± 4.65 | 82.58 ± 4.79 | 82.51 ± 4.85 | 82.58 ± 4.79 | |
FPFSCC | 79.96 ± 5.08 | 80.73 ± 5.16 | 79.96 ± 5.08 | 79.83 ± 5.12 | 79.96 ± 5.08 | |
FPFSNHC | 79.08 ± 5.57 | 79.63 ± 5.51 | 79.08 ± 5.57 | 78.97 ± 5.62 | 79.08 ± 5.57 | |
FPFS-EC | 75.71 ± 7.05 | 76.05 ± 7.09 | 75.71 ± 7.05 | 75.62 ± 7.07 | 75.71 ± 7.05 | |
FPFS-AC | 80.67 ± 5.63 | 81.23 ± 5.66 | 80.67 ± 5.63 | 80.58 ± 5.66 | 80.67 ± 5.63 | |
FPFS-CMC | 75.79 ± 6.75 | 76.14 ± 6.89 | 75.79 ± 6.75 | 75.72 ± 6.76 | 75.79 ± 6.75 | |
FPFS-3NN(P) | 80.38 ± 5.33 | 80.98 ± 5.28 | 80.38 ± 5.33 | 80.26 ± 5.4 | 80.38 ± 5.33 | |
FPFS-3NN(S) | 79.79 ± 5.6 | 80.41 ± 5.51 | 79.79 ± 5.6 | 79.67 ± 5.69 | 79.79 ± 5.6 | |
FPFS-3NN(K) | 80.46 ± 5.53 | 81.12 ± 5.47 | 80.46 ± 5.53 | 80.34 ± 5.61 | 80.46 ± 5.53 | |
IFPIFSC | 82.54 ± 5.44 | 82.97 ± 5.39 | 82.54 ± 5.44 | 82.48 ± 5.48 | 82.54 ± 5.44 | |
Ecoli | Fuzzy 3NN | 92.08 ± 1.22 | 53.87 ± 3.94 | 60.13 ± 6.24 | 64.95 ± 5.85 | 68.34 ± 4.89 |
FSSC | 94.73 ± 1.31 | 70.9 ± 7.74 | 74.61 ± 4.46 | 81.39 ± 5.05 | 80.69 ± 4.41 | |
FussCyier | 95.23 ± 1.19 | 73.87 ± 7.4 | 75.16 ± 4.73 | 82.21 ± 5.03 | 82.59 ± 4.08 | |
HDFSSC | 94.99 ± 1.1 | 69.08 ± 6 | 74.43 ± 4.63 | 81.44 ± 4.4 | 81.41 ± 3.85 | |
FPFSCC | 88.74 ± 1.78 | 47.56 ± 8.84 | 51.08 ± 8.31 | 56.28 ± 6.8 | 57.89 ± 5.7 | |
FPFSNHC | 93.64 ± 1.39 | 64 ± 7.65 | 66.75 ± 7.76 | 74.49 ± 6.31 | 76.13 ± 4.98 | |
FPFS-EC | 94.08 ± 1.28 | 68.97 ± 11.17 | 65.21 ± 8.02 | 74.07 ± 6.9 | 78.66 ± 4.75 | |
FPFS-AC | 94.1 ± 1.12 | 72.12 ± 8.3 | 67.66 ± 6.71 | 74.88 ± 4.71 | 79.04 ± 4.06 | |
FPFS-CMC | 93.94 ± 1.14 | 67.75 ± 9.7 | 64.38 ± 6.89 | 72.69 ± 5.24 | 78.18 ± 4.14 | |
FPFS-3NN(P) | 94.49 ± 1.03 | 74.72 ± 8.65 | 65.59 ± 6.41 | 74.75 ± 5.57 | 81.31 ± 3.45 | |
FPFS-3NN(S) | 95.18 ± 1.01 | 78.06 ± 7.5 | 70.1 ± 6.75 | 78.82 ± 5.3 | 83.66 ± 3.43 | |
FPFS-3NN(K) | 95.26 ± 1 | 77.83 ± 7.43 | 70.88 ± 6.87 | 78.46 ± 5.68 | 83.93 ± 3.34 | |
IFPIFSC | 94.8 ± 1.06 | 77.54 ± 7.7 | 71.43 ± 5.67 | 79.18 ± 4.76 | 81.73 ± 3.65 | |
Leaf | Fuzzy 3NN | 96.14 ± 0.23 | 31.16 ± 4.69 | 31.18 ± 3.95 | 61.27 ± 4.03 | 31.94 ± 4.05 |
FSSC | 97.43 ± 0.34 | 66.6 ± 5.92 | 61.82 ± 5.22 | 70.9 ± 3.85 | 61.5 ± 5.13 | |
FussCyier | 97.46 ± 0.35 | 66.76 ± 5.82 | 62.26 ± 5.23 | 71.58 ± 3.66 | 61.97 ± 5.21 | |
HDFSSC | 97.6 ± 0.32 | 68.65 ± 5.49 | 64.47 ± 5.01 | 72.52 ± 3.51 | 63.97 ± 4.77 | |
FPFSCC | 96.95 ± 0.32 | 59.05 ± 5.89 | 54.58 ± 5.07 | 67.86 ± 4.42 | 54.26 ± 4.75 | |
FPFSNHC | 97.46 ± 0.3 | 66.45 ± 5.12 | 62.43 ± 4.6 | 72.58 ± 3.27 | 61.97 ± 4.52 | |
FPFS-EC | 97.8 ± 0.3 | 71.26 ± 5.97 | 67.11 ± 5.04 | 74.37 ± 3.3 | 67.06 ± 4.54 | |
FPFS-AC | 97.85 ± 0.28 | 72.46 ± 4.26 | 67.86 ± 4.56 | 74.59 ± 3.43 | 67.74 ± 4.27 | |
FPFS-CMC | 97.74 ± 0.28 | 70.79 ± 4.49 | 66.38 ± 4.59 | 73.41 ± 3.59 | 66.15 ± 4.21 | |
FPFS-3NN(P) | 97.78 ± 0.28 | 71.74 ± 4.52 | 66.47 ± 3.9 | 74.31 ± 4.11 | 66.65 ± 4.13 | |
FPFS-3NN(S) | 97.94 ± 0.3 | 74.14 ± 4.72 | 68.83 ± 4.46 | 75.74 ± 4.15 | 69.12 ± 4.56 | |
FPFS-3NN(K) | 97.92 ± 0.31 | 74.32 ± 4.83 | 68.6 ± 4.43 | 75.16 ± 4.04 | 68.82 ± 4.62 | |
IFPIFSC | 98.15 ± 0.26 | 76.88 ± 4.09 | 72.17 ± 3.95 | 76.88 ± 3.11 | 72.24 ± 3.87 | |
Ionosphere | Fuzzy 3NN | 84.99 ± 3.61 | 89.17 ± 3.11 | 79.57 ± 4.86 | 81.66 ± 4.98 | 84.99 ± 3.61 |
FSSC | 64.1 ± 0.37 | 64.1 ± 0.37 | 50 ± 0 | 78.13 ± 0.27 | 64.1 ± 0.37 | |
FussCyier | 64.1 ± 0.37 | 64.1 ± 0.37 | 50 ± 0 | 78.13 ± 0.27 | 64.1 ± 0.37 | |
HDFSSC | 64.1 ± 0.37 | 64.1 ± 0.37 | 50 ± 0 | 78.13 ± 0.27 | 64.1 ± 0.37 | |
FPFSCC | 84.88 ± 6.17 | 84.51 ± 6.72 | 83.52 ± 5.79 | 83.58 ± 6.36 | 84.88 ± 6.17 | |
FPFSNHC | 82.6 ± 4.17 | 83.27 ± 5.08 | 78.43 ± 4.94 | 79.76 ± 5.1 | 82.6 ± 4.17 | |
FPFS-EC | 89.55 ± 3.65 | 91.98 ± 2.91 | 85.94 ± 4.97 | 87.73 ± 4.71 | 89.55 ± 3.65 | |
FPFS-AC | 88.81 ± 3.5 | 91.82 ± 2.63 | 84.79 ± 4.77 | 86.76 ± 4.52 | 88.81 ± 3.5 | |
FPFS-CMC | 89.12 ± 2.91 | 91.59 ± 2.48 | 85.44 ± 3.98 | 87.28 ± 3.69 | 89.12 ± 2.91 | |
FPFS-3NN(P) | 87.81 ± 2.84 | 91.11 ± 2.4 | 83.42 ± 3.83 | 85.51 ± 3.66 | 87.81 ± 2.84 | |
FPFS-3NN(S) | 87.78 ± 3.11 | 90.9 ± 3.02 | 83.47 ± 4.01 | 85.53 ± 3.9 | 87.78 ± 3.11 | |
FPFS-3NN(K) | 87.87 ± 3.09 | 91.03 ± 2.88 | 83.55 ± 4.04 | 85.62 ± 3.91 | 87.87 ± 3.09 | |
IFPIFSC | 91.14 ± 2.91 | 91.26 ± 3.43 | 89.54 ± 3.25 | 90.19 ± 3.22 | 91.14 ± 2.91 | |
Libras Movement | Fuzzy 3NN | 95.9 ± 0.55 | 73.7 ± 3.83 | 69.23 ± 4.06 | 69.07 ± 4.07 | 69.22 ± 4.13 |
FSSC | 93.13 ± 0.75 | 54.48 ± 5.59 | 48.39 ± 5.68 | 52.25 ± 5.52 | 48.44 ± 5.62 | |
FussCyier | 93.39 ± 0.72 | 55.52 ± 5.74 | 50.39 ± 5.58 | 53.84 ± 4.93 | 50.42 ± 5.43 | |
HDFSSC | 93.94 ± 0.72 | 59.18 ± 5.98 | 54.49 ± 5.51 | 58.01 ± 4.74 | 54.58 ± 5.41 | |
FPFSCC | 93.17 ± 0.75 | 53.71 ± 5.96 | 48.71 ± 5.7 | 52.09 ± 5.15 | 48.81 ± 5.66 | |
FPFSNHC | 93.15 ± 0.8 | 53.32 ± 6.05 | 48.64 ± 6 | 53 ± 5.49 | 48.64 ± 5.99 | |
FPFS-EC | 97.01 ± 0.56 | 80.44 ± 4.62 | 77.59 ± 4.18 | 77.63 ± 4.17 | 77.56 ± 4.2 | |
FPFS-AC | 97.33 ± 0.52 | 82.59 ± 3.83 | 80.09 ± 3.78 | 79.78 ± 3.61 | 79.94 ± 3.87 | |
FPFS-CMC | 96.95 ± 0.59 | 79.7 ± 4.51 | 77.27 ± 4.26 | 77.64 ± 4.35 | 77.14 ± 4.4 | |
FPFS-3NN(P) | 96.85 ± 0.59 | 80.47 ± 4.13 | 76.42 ± 4.4 | 76.22 ± 4.21 | 76.39 ± 4.44 | |
FPFS-3NN(S) | 96.74 ± 0.6 | 79.61 ± 3.79 | 75.55 ± 4.43 | 75.26 ± 4.24 | 75.56 ± 4.5 | |
FPFS-3NN(K) | 96.75 ± 0.62 | 79.67 ± 3.96 | 75.62 ± 4.57 | 75.31 ± 4.37 | 75.61 ± 4.65 | |
IFPIFSC | 97.89 ± 0.46 | 86.55 ± 3.16 | 84.21 ± 3.53 | 83.65 ± 3.59 | 84.17 ± 3.43 | |
Dermatology | Fuzzy 3NN | 91.22 ± 1.2 | 77.95 ± 3.66 | 71.9 ± 4.71 | 72.01 ± 4.45 | 73.66 ± 3.6 |
FSSC | 99.15 ± 0.55 | 97.36 ± 1.75 | 97.14 ± 1.88 | 97.13 ± 1.86 | 97.46 ± 1.65 | |
FussCyier | 98.62 ± 0.81 | 95.82 ± 2.32 | 96.27 ± 2.11 | 95.78 ± 2.41 | 95.85 ± 2.44 | |
HDFSSC | 98.87 ± 0.72 | 96.51 ± 2.2 | 96.5 ± 2.16 | 96.31 ± 2.28 | 96.61 ± 2.16 | |
FPFSCC | 93.85 ± 1.33 | 83.13 ± 3.86 | 82.69 ± 3.73 | 81.68 ± 3.88 | 81.56 ± 3.99 | |
FPFSNHC | 97.75 ± 0.96 | 93.65 ± 2.52 | 93.77 ± 2.72 | 93.08 ± 2.95 | 93.25 ± 2.88 | |
FPFS-EC | 98.03 ± 0.77 | 94.21 ± 2.19 | 93.98 ± 2.4 | 93.69 ± 2.41 | 94.1 ± 2.31 | |
FPFS-AC | 98.83 ± 0.78 | 96.53 ± 2.33 | 96.23 ± 2.5 | 96.23 ± 2.5 | 96.5 ± 2.33 | |
FPFS-CMC | 97.66 ± 0.81 | 92.75 ± 2.6 | 92.65 ± 2.74 | 92.42 ± 2.66 | 92.98 ± 2.43 | |
FPFS-3NN(P) | 97.4 ± 0.88 | 92.31 ± 2.57 | 91.98 ± 2.76 | 91.76 ± 2.8 | 92.21 ± 2.65 | |
FPFS-3NN(S) | 98.31 ± 0.72 | 94.78 ± 2.3 | 94.65 ± 2.37 | 94.46 ± 2.38 | 94.94 ± 2.17 | |
FPFS-3NN(K) | 98.24 ± 0.76 | 94.66 ± 2.3 | 94.5 ± 2.38 | 94.28 ± 2.44 | 94.72 ± 2.27 | |
IFPIFSC | 99.01 ± 0.72 | 96.93 ± 2.37 | 96.72 ± 2.3 | 96.67 ± 2.41 | 97.02 ± 2.15 | |
Breast Cancer Wisconsin | Fuzzy 3NN | 92.02 ± 2.1 | 91.97 ± 2.24 | 90.96 ± 2.39 | 91.36 ± 2.29 | 92.02 ± 2.1 |
FSSC | 93.64 ± 2.33 | 93.4 ± 2.49 | 93.03 ± 2.64 | 93.16 ± 2.52 | 93.64 ± 2.33 | |
FussCyier | 93.53 ± 2.3 | 94.3 ± 2.18 | 91.98 ± 2.88 | 92.88 ± 2.58 | 93.53 ± 2.3 | |
HDFSSC | 92.85 ± 2.27 | 93 ± 2.29 | 91.69 ± 2.79 | 92.22 ± 2.52 | 92.85 ± 2.27 | |
FPFSCC | 93.34 ± 1.9 | 93.09 ± 2.09 | 92.73 ± 2.12 | 92.85 ± 2.04 | 93.34 ± 1.9 | |
FPFSNHC | 93.81 ± 2.25 | 94.69 ± 2.11 | 92.22 ± 2.79 | 93.19 ± 2.52 | 93.81 ± 2.25 | |
FPFS-EC | 95.27 ± 1.65 | 95.09 ± 1.94 | 94.88 ± 1.68 | 94.94 ± 1.75 | 95.27 ± 1.65 | |
FPFS-AC | 95.08 ± 1.58 | 94.85 ± 1.79 | 94.76 ± 1.74 | 94.74 ± 1.68 | 95.08 ± 1.58 | |
FPFS-CMC | 95.03 ± 1.74 | 94.84 ± 1.9 | 94.62 ± 1.94 | 94.67 ± 1.86 | 95.03 ± 1.74 | |
FPFS-3NN(P) | 96.63 ± 1.43 | 96.75 ± 1.6 | 96.07 ± 1.59 | 96.37 ± 1.54 | 96.63 ± 1.43 | |
FPFS-3NN(S) | 96.54 ± 1.52 | 96.68 ± 1.69 | 95.96 ± 1.68 | 96.27 ± 1.63 | 96.54 ± 1.52 | |
FPFS-3NN(K) | 96.54 ± 1.52 | 96.68 ± 1.69 | 95.96 ± 1.68 | 96.27 ± 1.63 | 96.54 ± 1.52 | |
IFPIFSC | 95.69 ± 1.43 | 95.57 ± 1.59 | 95.28 ± 1.6 | 95.38 ± 1.54 | 95.69 ± 1.43 | |
HCV Data | Fuzzy 3NN | 97.17 ± 0.53 | 54.58 ± 11.24 | 48.12 ± 12.36 | 67.13 ± 10.33 | 92.94 ± 1.31 |
FSSC | 97.29 ± 0.62 | 64.38 ± 8.68 | 63.6 ± 11.47 | 69.32 ± 7.91 | 93.23 ± 1.55 | |
FussCyier | 97.32 ± 0.61 | 65.17 ± 9.47 | 62.55 ± 11.3 | 69.64 ± 8.84 | 93.31 ± 1.52 | |
HDFSSC | 96.73 ± 0.96 | 62.71 ± 8.67 | 64.74 ± 11.14 | 67.65 ± 6.87 | 91.82 ± 2.41 | |
FPFSCC | 95.95 ± 0.99 | 51.7 ± 13.03 | 50.43 ± 11.24 | 65.59 ± 10.15 | 89.88 ± 2.48 | |
FPFSNHC | 97.15 ± 0.64 | 63.69 ± 12.44 | 54.98 ± 11 | 68.58 ± 6.68 | 92.87 ± 1.61 | |
FPFS-EC | 97.11 ± 0.57 | 60.45 ± 14.64 | 47.08 ± 10 | 82.26 ± 10.98 | 92.78 ± 1.42 | |
FPFS-AC | 97.97 ± 0.58 | 73.93 ± 14.51 | 55.96 ± 10.7 | 76.71 ± 10.02 | 94.92 ± 1.45 | |
FPFS-CMC | 97.04 ± 0.55 | 63.74 ± 13.69 | 48.65 ± 10.22 | 76.46 ± 10.7 | 92.6 ± 1.38 | |
FPFS-3NN(P) | 97 ± 0.33 | 56.97 ± 9.95 | 38.03 ± 5.65 | 84.43 ± 9.4 | 92.51 ± 0.84 | |
FPFS-3NN(S) | 97.3 ± 0.41 | 67.66 ± 12.12 | 43.88 ± 7.76 | 80.49 ± 9.48 | 93.26 ± 1.04 | |
FPFS-3NN(K) | 97.3 ± 0.41 | 67.22 ± 11.88 | 43.88 ± 7.76 | 80.4 ± 9.54 | 93.26 ± 1.04 | |
IFPIFSC | 97.92 ± 0.52 | 70.56 ± 10.8 | 57.48 ± 12.03 | 74.69 ± 7.55 | 94.81 ± 1.29 | |
Parkinson’s Disease Classification | Fuzzy 3NN | 71.27 ± 3.19 | 61.36 ± 4.28 | 60.41 ± 3.76 | 60.68 ± 3.93 | 71.27 ± 3.19 |
FSSC | 38.3 ± 7 | 47.68 ± 4.78 | 48 ± 4.87 | 37.76 ± 6.63 | 38.3 ± 7 | |
FussCyier | 62.3 ± 16.08 | 47.44 ± 6.03 | 49.01 ± 2.09 | 44.4 ± 11.95 | 62.3 ± 16.08 | |
HDFSSC | 62.52 ± 15.96 | 47.31 ± 6.73 | 49.01 ± 2.22 | 45.17 ± 13.02 | 62.52 ± 15.96 | |
FPFSCC | 74.56 ± 3.9 | 69.04 ± 4.1 | 72.65 ± 4.7 | 69.79 ± 4.35 | 74.56 ± 3.9 | |
FPFSNHC | 73.79 ± 2.84 | 67.85 ± 3.19 | 70.99 ± 4.09 | 68.52 ± 3.36 | 73.79 ± 2.84 | |
FPFS-EC | 94.1 ± 2.37 | 92.32 ± 3.28 | 92.24 ± 3.28 | 92.22 ± 3.12 | 94.1 ± 2.37 | |
FPFS-AC | 93.63 ± 1.88 | 91.87 ± 2.76 | 91.38 ± 2.66 | 91.55 ± 2.46 | 93.63 ± 1.88 | |
FPFS-CMC | 90.9 ± 2.32 | 88.37 ± 3.44 | 87.72 ± 2.89 | 87.94 ± 2.94 | 90.9 ± 2.32 | |
FPFS-3NN(P) | 92.39 ± 1.93 | 91.11 ± 2.59 | 88.57 ± 3.4 | 89.62 ± 2.79 | 92.39 ± 1.93 | |
FPFS-3NN(S) | 91.67 ± 1.88 | 89.89 ± 2.54 | 87.84 ± 3.3 | 88.69 ± 2.73 | 91.67 ± 1.88 | |
FPFS-3NN(K) | 91.67 ± 1.85 | 89.96 ± 2.44 | 87.74 ± 3.36 | 88.66 ± 2.73 | 91.67 ± 1.85 | |
IFPIFSC | 94.95 ± 1.56 | 93.76 ± 2.18 | 92.96 ± 2.56 | 93.27 ± 2.12 | 94.95 ± 1.56 | |
Mice Protein Expression | Fuzzy 3NN | 99.89 ± 0.12 | 99.58 ± 0.43 | 99.56 ± 0.47 | 99.56 ± 0.46 | 99.55 ± 0.47 |
FSSC | 98.67 ± 0.48 | 95.01 ± 1.8 | 94.9 ± 1.86 | 94.83 ± 1.88 | 94.69 ± 1.92 | |
FussCyier | 98.75 ± 0.48 | 95.33 ± 1.78 | 95.22 ± 1.85 | 95.14 ± 1.88 | 94.99 ± 1.9 | |
HDFSSC | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
FPFSCC | 99.98 ± 0.05 | 99.91 ± 0.18 | 99.91 ± 0.19 | 99.91 ± 0.19 | 99.91 ± 0.19 | |
FPFSNHC | 99.98 ± 0.05 | 99.93 ± 0.16 | 99.93 ± 0.16 | 99.92 ± 0.16 | 99.92 ± 0.18 | |
FPFS-EC | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
FPFS-AC | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
FPFS-CMC | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
FPFS-3NN(P) | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
FPFS-3NN(S) | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
FPFS-3NN(K) | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
IFPIFSC | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
Semeion Handwritten Digit | Fuzzy 3NN | 97.23 ± 0.71 | 97.67 ± 1.47 | 86.67 ± 3.56 | 91.16 ± 2.66 | 97.23 ± 0.71 |
FSSC | 44.16 ± 2.96 | 57.54 ± 0.36 | 68.98 ± 1.66 | 40.62 ± 2.23 | 44.16 ± 2.96 | |
FussCyier | 76.2 ± 2.65 | 64.06 ± 1.33 | 84.36 ± 2.19 | 64.53 ± 2.41 | 76.2 ± 2.65 | |
HDFSSC | 89.45 ± 1.75 | 73.53 ± 2.52 | 88.22 ± 2.91 | 78 ± 2.7 | 89.45 ± 1.75 | |
FPFSCC | 66.56 ± 7.62 | 60.04 ± 2.83 | 75.92 ± 4.98 | 56.13 ± 6.03 | 66.56 ± 7.62 | |
FPFSNHC | 80.18 ± 2.34 | 65.7 ± 1.66 | 85.25 ± 2.8 | 67.85 ± 2.51 | 80.18 ± 2.34 | |
FPFS-EC | 96.65 ± 0.9 | 92.33 ± 2.98 | 88.4 ± 3.78 | 90.11 ± 2.86 | 96.65 ± 0.9 | |
FPFS-AC | 95.2 ± 1.37 | 88.24 ± 4.48 | 83.75 ± 4.72 | 85.68 ± 4.24 | 95.2 ± 1.37 | |
FPFS-CMC | 94.46 ± 1.15 | 85.4 ± 3.78 | 82.85 ± 3.92 | 83.93 ± 3.42 | 94.46 ± 1.15 | |
FPFS-3NN(P) | 96.62 ± 0.77 | 94.26 ± 2.45 | 86.1 ± 3.52 | 89.53 ± 2.62 | 96.62 ± 0.77 | |
FPFS-3NN(S) | 96.62 ± 0.77 | 94.26 ± 2.45 | 86.1 ± 3.52 | 89.53 ± 2.62 | 96.62 ± 0.77 | |
FPFS-3NN(K) | 96.62 ± 0.77 | 94.26 ± 2.45 | 86.1 ± 3.52 | 89.53 ± 2.62 | 96.62 ± 0.77 | |
IFPIFSC | 98.14 ± 0.75 | 97.32 ± 1.85 | 92.16 ± 3.47 | 94.42 ± 2.43 | 98.14 ± 0.75 | |
Car Evaluation | Fuzzy 3NN | 94.43 ± 0.71 | 79.11 ± 2.84 | 62.39 ± 4.61 | 66.95 ± 4.89 | 88.86 ± 1.41 |
FSSC | 72.2 ± 1.04 | 38.09 ± 1.48 | 57.24 ± 3.43 | 34.39 ± 1.83 | 44.39 ± 2.08 | |
FussCyier | 80.38 ± 1.08 | 44.49 ± 1.83 | 65.07 ± 3.52 | 45.43 ± 2.22 | 60.76 ± 2.16 | |
HDFSSC | 86.66 ± 1.05 | 55.65 ± 2.45 | 76.71 ± 4.15 | 60.53 ± 3.05 | 73.32 ± 2.09 | |
FPFSCC | 84.99 ± 1.43 | 58.65 ± 4.56 | 75.17 ± 4.82 | 62.41 ± 5.01 | 69.98 ± 2.87 | |
FPFSNHC | 79.61 ± 1.06 | 42.66 ± 2.21 | 63.24 ± 3.35 | 43.42 ± 2.78 | 59.21 ± 2.11 | |
FPFS-EC | 97.46 ± 0.54 | 90.01 ± 2.56 | 89.04 ± 3.82 | 89.25 ± 2.96 | 94.91 ± 1.07 | |
FPFS-AC | 97.79 ± 0.56 | 90.51 ± 3.23 | 92.62 ± 2.64 | 91.24 ± 2.86 | 95.57 ± 1.13 | |
FPFS-CMC | 97.42 ± 0.62 | 89.93 ± 3.01 | 88.59 ± 3.57 | 88.88 ± 2.95 | 94.85 ± 1.24 | |
FPFS-3NN(P) | 97.7 ± 0.69 | 89.07 ± 3.8 | 90.77 ± 3.76 | 89.62 ± 3.7 | 95.41 ± 1.38 | |
FPFS-3NN(S) | 97.77 ± 0.64 | 89.4 ± 3.55 | 91.12 ± 3.47 | 89.99 ± 3.39 | 95.54 ± 1.28 | |
FPFS-3NN(K) | 97.75 ± 0.65 | 89.39 ± 3.61 | 91.03 ± 3.45 | 89.93 ± 3.42 | 95.49 ± 1.29 | |
IFPIFSC | 98.03 ± 0.42 | 91.27 ± 3.03 | 90.41 ± 3.19 | 90.59 ± 2.64 | 96.06 ± 0.85 | |
Wireless Indoor Localization | Fuzzy 3NN | 99.13 ± 0.28 | 98.29 ± 0.55 | 98.26 ± 0.56 | 98.26 ± 0.56 | 98.26 ± 0.56 |
FSSC | 97.5 ± 0.42 | 95.42 ± 0.71 | 95 ± 0.83 | 94.99 ± 0.84 | 95 ± 0.83 | |
FussCyier | 97.62 ± 0.4 | 95.64 ± 0.68 | 95.24 ± 0.8 | 95.24 ± 0.8 | 95.24 ± 0.8 | |
HDFSSC | 96.73 ± 0.57 | 93.9 ± 1.04 | 93.46 ± 1.15 | 93.46 ± 1.15 | 93.46 ± 1.15 | |
FPFSCC | 91.39 ± 0.88 | 83.12 ± 1.73 | 82.79 ± 1.76 | 82.61 ± 1.78 | 82.79 ± 1.76 | |
FPFSNHC | 94.64 ± 0.75 | 89.79 ± 1.36 | 89.27 ± 1.5 | 89.33 ± 1.48 | 89.27 ± 1.5 | |
FPFS-EC | 94.86 ± 0.79 | 89.83 ± 1.57 | 89.73 ± 1.58 | 89.73 ± 1.58 | 89.73 ± 1.58 | |
FPFS-AC | 95.63 ± 0.59 | 91.4 ± 1.18 | 91.26 ± 1.19 | 91.26 ± 1.19 | 91.26 ± 1.19 | |
FPFS-CMC | 94.54 ± 0.69 | 89.22 ± 1.37 | 89.09 ± 1.39 | 89.1 ± 1.38 | 89.09 ± 1.39 | |
FPFS-3NN(P) | 95.27 ± 0.73 | 90.71 ± 1.43 | 90.54 ± 1.46 | 90.57 ± 1.45 | 90.54 ± 1.46 | |
FPFS-3NN(S) | 95.05 ± 0.73 | 90.28 ± 1.41 | 90.11 ± 1.46 | 90.14 ± 1.44 | 90.11 ± 1.46 | |
FPFS-3NN(K) | 96.32 ± 0.67 | 92.8 ± 1.29 | 92.64 ± 1.33 | 92.67 ± 1.32 | 92.64 ± 1.33 | |
IFPIFSC | 99.15 ± 0.24 | 98.32 ± 0.47 | 98.3 ± 0.48 | 98.3 ± 0.48 | 98.3 ± 0.48 | |
Mean Performance Results | Fuzzy 3NN | 89.1 ± 2.42 | 75.91 ± 4.92 | 72.31 ± 5.51 | 76.27 ± 5.06 | 78.7 ± 3.99 |
FSSC | 82.93 ± 2.53 | 73.21 ± 4.9 | 73.38 ± 4.66 | 72.95 ± 4.25 | 73.58 ± 4.08 | |
FussCyier | 86.01 ± 2.9 | 73.98 ± 4.86 | 74.51 ± 4.5 | 74.96 ± 4.49 | 77.12 ± 4.48 | |
HDFSSC | 87.43 ± 2.91 | 75.51 ± 4.69 | 76.26 ± 4.69 | 77.25 ± 4.55 | 79.42 ± 4.44 | |
FPFSCC | 86.25 ± 3.08 | 72.2 ± 5.91 | 73.07 ± 5.94 | 73.55 ± 5.58 | 75.43 ± 4.9 | |
FPFSNHC | 87.2 ± 2.49 | 75.07 ± 5.28 | 75.64 ± 5.21 | 75.39 ± 4.4 | 77.92 ± 4.13 | |
FPFS-EC | 93.17 ± 2.1 | 84.82 ± 5.04 | 82.56 ± 4.91 | 85.91 ± 4.43 | 86.92 ± 3.5 | |
FPFS-AC | 93.2 ± 2.1 | 85.81 ± 4.87 | 83.25 ± 4.85 | 85.63 ± 4.35 | 87.36 ± 3.48 | |
FPFS-CMC | 92.68 ± 2.1 | 84.03 ± 4.97 | 81.73 ± 4.9 | 84.63 ± 4.4 | 86.24 ± 3.55 | |
FPFS-3NN(P) | 93.04 ± 1.95 | 84.75 ± 4.47 | 81.39 ± 4.46 | 85.38 ± 4.28 | 86.67 ± 3.31 | |
FPFS-3NN(S) | 92.99 ± 1.95 | 85.45 ± 4.41 | 81.9 ± 4.53 | 85.38 ± 4.19 | 86.84 ± 3.26 | |
FPFS-3NN(K) | 93.03 ± 1.96 | 85.51 ± 4.43 | 81.98 ± 4.58 | 85.38 ± 4.21 | 86.89 ± 3.3 | |
IFPIFSC | 94.45 ± 1.83 | 88.21 ± 4.21 | 86.11 ± 4.31 | 87.98 ± 3.68 | 89.62 ± 3.03 |
Classifiers | Acc | Pre | Rec | MacF | MicF | Total Rank |
---|---|---|---|---|---|---|
Fuzzy 3NN | 0/20 | 1/20 | 0/20 | 0/20 | 0/20 | 1/100 |
FSSC | 1/20 | 1/20 | 1/20 | 1/20 | 1/20 | 5/100 |
FussCyier | 0/20 | 0/20 | 1/20 | 1/20 | 0/20 | 2/100 |
HDFSSC | 2/20 | 2/20 | 3/20 | 2/20 | 2/20 | 11/100 |
FPFSCC | 0/20 | 0/20 | 0/20 | 0/20 | 0/20 | 0/100 |
FPFSNHC | 0/20 | 0/20 | 0/20 | 0/20 | 0/20 | 0/100 |
FPFS-EC | 3/20 | 4/20 | 2/20 | 3/20 | 3/20 | 15/100 |
FPFS-AC | 3/20 | 3/20 | 3/20 | 3/20 | 3/20 | 15/100 |
FPFS-CMC | 1/20 | 1/20 | 1/20 | 1/20 | 1/20 | 5/100 |
FPFS-3NN(P) | 2/20 | 3/20 | 2/20 | 3/20 | 2/20 | 12/100 |
FPFS-3NN(S) | 1/20 | 2/20 | 1/20 | 1/20 | 1/20 | 6/100 |
FPFS-3NN(K) | 2/20 | 1/20 | 1/20 | 1/20 | 2/20 | 7/100 |
IFPIFSC | 12/20 | 9/20 | 12/20 | 11/20 | 12/20 | 56/100 |
Classifiers | Acc | Pre | Rec | MacF | MicF |
---|---|---|---|---|---|
IFPIFSC versus Fuzzy 3NN | 20 | 19 | 20 | 20 | 20 |
IFPIFSC versus FSSC | 19 | 19 | 17 | 18 | 19 |
IFPIFSC versus FussCyier | 19 | 20 | 18 | 19 | 20 |
IFPIFSC versus HDFSSC | 18 | 19 | 17 | 18 | 19 |
IFPIFSC versus FPFSCC | 20 | 20 | 20 | 20 | 20 |
IFPIFSC versus FPFSNHC | 20 | 20 | 20 | 20 | 20 |
IFPIFSC versus FPFS-EC | 18 | 16 | 19 | 16 | 17 |
IFPIFSC versus FPFS-AC | 18 | 17 | 18 | 17 | 18 |
IFPIFSC versus FPFS-CMC | 19 | 17 | 19 | 19 | 19 |
IFPIFSC versus FPFS-3NN(P) | 19 | 17 | 18 | 18 | 19 |
IFPIFSC versus FPFS-3NN(S) | 18 | 18 | 18 | 18 | 18 |
IFPIFSC versus FPFS-3NN(K) | 18 | 18 | 18 | 18 | 18 |
Datasets | Classifiers | Acc ± SD | Pre ± SD | Rec ± SD | MacF ± SD | MicF ± SD |
---|---|---|---|---|---|---|
Zoo | SVM | 98.51 ± 1.14 | 92.64 ± 6.1 | 89.79 ± 7.5 | 94.88 ± 4.55 | 94.84 ± 3.99 |
DT | 96.97 ± 1.19 | 83.19 ± 8.82 | 76.02 ± 9.61 | 87.71 ± 4.33 | 89.6 ± 4.18 | |
BT | 82.45 ± 1.28 | 40.57 ± 1.15 | 14.76 ± 0.96 | 57.71 ± 1.15 | 40.57 ± 1.15 | |
RF | 98.9 ± 1.02 | 94.96 ± 6.42 | 90.36 ± 9.41 | 96.58 ± 4 | 96.24 ± 3.54 | |
AdaBoost | 82.45 ± 1.28 | 40.57 ± 1.15 | 14.76 ± 0.96 | 57.71 ± 1.15 | 40.57 ± 1.15 | |
IFPIFSC | 98.67 ± 1.03 | 93.29 ± 6.43 | 89.38 ± 8.15 | 95.44 ± 4.57 | 95.44 ± 3.59 | |
Breast Tissue | SVM | 89.03 ± 3.56 | 69.42 ± 11.53 | 66.12 ± 11.07 | 68.75 ± 9.86 | 67.1 ± 10.68 |
DT | 88.8 ± 2.98 | 69.31 ± 9.82 | 65.28 ± 9.38 | 69.12 ± 8.28 | 66.41 ± 8.94 | |
BT | 89.75 ± 2.92 | 71.85 ± 9.62 | 68.49 ± 8.9 | 70.29 ± 7.01 | 69.26 ± 8.75 | |
RF | 89.81 ± 3.16 | 70.99 ± 11.25 | 68.13 ± 9.58 | 72.02 ± 7.23 | 69.42 ± 9.48 | |
AdaBoost | 89.75 ± 2.92 | 71.85 ± 9.62 | 68.49 ± 8.9 | 70.29 ± 7.01 | 69.26 ± 8.75 | |
IFPIFSC | 90.97 ± 2.22 | 74.85 ± 8.12 | 71.96 ± 7.36 | 73.15 ± 6.85 | 72.91 ± 6.67 | |
Teaching Assistant Evaluation | SVM | 68.03 ± 5.17 | 53.94 ± 8.34 | 52.2 ± 7.79 | 51.88 ± 7.59 | 52.05 ± 7.76 |
DT | 69.76 ± 6.08 | 55.26 ± 9.74 | 54.57 ± 9.12 | 53.91 ± 9.36 | 54.65 ± 9.12 | |
BT | 70.5 ± 5.73 | 56.88 ± 9.61 | 55.73 ± 8.63 | 55.36 ± 8.75 | 55.75 ± 8.59 | |
RF | 74.56 ± 4.68 | 62.81 ± 7.87 | 61.73 ± 7.08 | 61.16 ± 7.32 | 61.85 ± 7.01 | |
AdaBoost | 70.5 ± 5.73 | 56.88 ± 9.61 | 55.73 ± 8.63 | 55.36 ± 8.75 | 55.75 ± 8.59 | |
IFPIFSC | 74.62 ± 5 | 62.75 ± 8.12 | 61.79 ± 7.6 | 61.34 ± 7.85 | 61.94 ± 7.5 | |
Wine | SVM | 96.78 ± 2.27 | 95.45 ± 3.06 | 95.43 ± 3.12 | 95.19 ± 3.33 | 95.16 ± 3.4 |
DT | 93.69 ± 3.48 | 91.08 ± 5.21 | 90.91 ± 4.92 | 90.59 ± 5.27 | 90.54 ± 5.22 | |
BT | 61.17 ± 6.34 | 41.79 ± 9.64 | 35.54 ± 10.93 | 58.21 ± 6.24 | 41.76 ± 9.51 | |
RF | 98.68 ± 1.44 | 98.02 ± 2.18 | 98.29 ± 1.85 | 98.06 ± 2.11 | 98.03 ± 2.16 | |
AdaBoost | 61.17 ± 6.34 | 41.79 ± 9.64 | 35.54 ± 10.93 | 58.21 ± 6.24 | 41.76 ± 9.51 | |
IFPIFSC | 97.98 ± 2.05 | 97.37 ± 2.39 | 97.45 ± 2.62 | 97.2 ± 2.88 | 96.97 ± 3.08 | |
Parkinsons[sic] | SVM | 86.67 ± 3.06 | 87.29 ± 6.23 | 75.98 ± 5.42 | 79.04 ± 5.42 | 86.67 ± 3.06 |
DT | 86.67 ± 5.38 | 82.75 ± 6.98 | 83.58 ± 6.64 | 82.57 ± 6.51 | 86.67 ± 5.38 | |
BT | 89.23 ± 5.56 | 86.83 ± 7.62 | 84.09 ± 8.17 | 84.87 ± 7.85 | 89.23 ± 5.56 | |
RF | 90.67 ± 3.76 | 90.23 ± 5.54 | 84.64 ± 6.44 | 86.45 ± 5.57 | 90.67 ± 3.76 | |
AdaBoost | 88.87 ± 6.85 | 87.64 ± 8.09 | 81.6 ± 13.94 | 87.43 ± 5.42 | 88.87 ± 6.85 | |
IFPIFSC | 94.67 ± 3.97 | 92.72 ± 5.29 | 93.76 ± 5.59 | 92.95 ± 5.13 | 94.67 ± 3.97 | |
Sonar | SVM | 76.2 ± 6.51 | 77.01 ± 6.77 | 75.69 ± 6.54 | 75.68 ± 6.7 | 76.2 ± 6.51 |
DT | 71.87 ± 6.85 | 72.33 ± 6.94 | 71.67 ± 6.83 | 71.51 ± 6.92 | 71.87 ± 6.85 | |
BT | 85.04 ± 5.91 | 85.65 ± 6 | 84.75 ± 5.94 | 84.84 ± 5.97 | 85.04 ± 5.91 | |
RF | 83.7 ± 6 | 84.73 ± 5.82 | 83.34 ± 6.1 | 83.37 ± 6.2 | 83.7 ± 6 | |
AdaBoost | 84.37 ± 5.16 | 85.05 ± 5.18 | 83.99 ± 5.22 | 84.12 ± 5.26 | 84.37 ± 5.16 | |
IFPIFSC | 87.45 ± 5.13 | 88.26 ± 5.01 | 87.04 ± 5.23 | 87.21 ± 5.27 | 87.45 ± 5.13 | |
Seeds | SVM | 94.44 ± 2.41 | 92.12 ± 3.55 | 91.67 ± 3.61 | 91.58 ± 3.67 | 91.67 ± 3.61 |
DT | 94.29 ± 2.57 | 92.03 ± 3.69 | 91.43 ± 3.85 | 91.38 ± 3.91 | 91.43 ± 3.85 | |
BT | 88.7 ± 14.81 | 83.41 ± 22.36 | 83.05 ± 22.21 | 85.64 ± 16.15 | 83.05 ± 22.21 | |
RF | 95.27 ± 2.28 | 93.39 ± 3.25 | 92.9 ± 3.42 | 92.87 ± 3.44 | 92.9 ± 3.42 | |
AdaBoost | 88.7 ± 14.81 | 83.41 ± 22.36 | 83.05 ± 22.21 | 85.64 ± 16.15 | 83.05 ± 22.21 | |
IFPIFSC | 95.68 ± 2.44 | 94.02 ± 3.39 | 93.52 ± 3.66 | 93.48 ± 3.71 | 93.52 ± 3.66 | |
Parkinson Acoustic | SVM | 80.17 ± 6.12 | 80.85 ± 5.98 | 80.17 ± 6.12 | 80.03 ± 6.23 | 80.17 ± 6.12 |
DT | 72.54 ± 5.95 | 73.1 ± 6.17 | 72.54 ± 5.95 | 72.38 ± 5.98 | 72.54 ± 5.95 | |
BT | 80.29 ± 5.46 | 81.03 ± 5.42 | 80.29 ± 5.46 | 80.16 ± 5.52 | 80.29 ± 5.46 | |
RF | 80.46 ± 5.39 | 81.13 ± 5.48 | 80.46 ± 5.39 | 80.35 ± 5.43 | 80.46 ± 5.39 | |
AdaBoost | 81.54 ± 5.76 | 82.21 ± 5.72 | 81.54 ± 5.76 | 81.43 ± 5.81 | 81.54 ± 5.76 | |
IFPIFSC | 81.88 ± 4.67 | 82.32 ± 4.62 | 81.88 ± 4.67 | 81.81 ± 4.72 | 81.88 ± 4.67 | |
Ecoli | SVM | 93.91 ± 0.78 | 78.32 ± 9.3 | 51.95 ± 9.5 | 75.99 ± 6.39 | 79.29 ± 2.95 |
DT | 94.43 ± 1.16 | 71.31 ± 8.92 | 57.72 ± 7.98 | 75.75 ± 5.77 | 80.69 ± 4.34 | |
BT | 95.28 ± 1.09 | 78.54 ± 9.7 | 67.64 ± 9.94 | 80.4 ± 5.47 | 83.49 ± 4.16 | |
RF | 95.8 ± 0.97 | 84.53 ± 5.55 | 71.05 ± 9.06 | 83.45 ± 4.34 | 85.69 ± 3.53 | |
AdaBoost | 95.28 ± 1.09 | 78.54 ± 9.7 | 67.64 ± 9.94 | 80.4 ± 5.47 | 83.49 ± 4.16 | |
IFPIFSC | 94.85 ± 1.01 | 77.57 ± 7.86 | 71.34 ± 6.66 | 79.43 ± 4.82 | 81.82 ± 3.81 | |
Leaf | SVM | 96.96 ± 0.29 | 62.81 ± 5.15 | 53.46 ± 4.08 | 68.93 ± 4.32 | 54.47 ± 4.35 |
DT | 97.44 ± 0.36 | 66.56 ± 6.58 | 61.31 ± 5.54 | 70.92 ± 3.94 | 61.65 ± 5.4 | |
BT | 97.84 ± 0.38 | 73.3 ± 6.15 | 67.39 ± 5.9 | 74.64 ± 4.25 | 67.62 ± 5.63 | |
RF | 98.4 ± 0.35 | 80.12 ± 5.24 | 75.43 ± 5.25 | 80.56 ± 3.94 | 75.94 ± 5.25 | |
AdaBoost | 97.84 ± 0.38 | 73.3 ± 6.15 | 67.39 ± 5.9 | 74.64 ± 4.25 | 67.62 ± 5.63 | |
IFPIFSC | 98.11 ± 0.31 | 76.44 ± 4.84 | 71.4 ± 4.7 | 75.83 ± 3.95 | 71.59 ± 4.69 | |
Ionosphere | SVM | 87.18 ± 2.85 | 89.02 ± 2.87 | 83.44 ± 3.83 | 85.08 ± 3.61 | 87.18 ± 2.85 |
DT | 88.58 ± 3.32 | 87.84 ± 3.7 | 87.75 ± 3.69 | 87.61 ± 3.6 | 88.58 ± 3.32 | |
BT | 93.93 ± 2.7 | 94.57 ± 2.64 | 92.32 ± 3.41 | 93.21 ± 3.1 | 93.93 ± 2.7 | |
RF | 93.3 ± 2.7 | 93.55 ± 2.9 | 91.98 ± 3.24 | 92.58 ± 3.03 | 93.3 ± 2.7 | |
AdaBoost | 93.25 ± 2.39 | 94.01 ± 2.43 | 91.43 ± 3.03 | 92.43 ± 2.75 | 93.25 ± 2.39 | |
IFPIFSC | 91.43 ± 2.56 | 91.6 ± 2.69 | 89.87 ± 3.4 | 90.47 ± 2.95 | 91.43 ± 2.56 | |
Libras Movement | SVM | 95.86 ± 0.63 | 73.58 ± 4.58 | 68.99 ± 4.61 | 68.76 ± 4.83 | 68.97 ± 4.73 |
DT | 94.92 ± 0.88 | 65.79 ± 6.93 | 61.87 ± 6.68 | 63.13 ± 6.09 | 61.89 ± 6.62 | |
BT | 96.09 ± 0.63 | 74.11 ± 4.32 | 70.63 ± 4.8 | 70.94 ± 5.08 | 70.64 ± 4.72 | |
RF | 97.45 ± 0.57 | 83.09 ± 3.92 | 80.95 ± 4.21 | 80.78 ± 4.45 | 80.86 ± 4.29 | |
AdaBoost | 96.09 ± 0.63 | 74.11 ± 4.32 | 70.63 ± 4.8 | 70.94 ± 5.08 | 70.64 ± 4.72 | |
IFPIFSC | 97.93 ± 0.5 | 86.88 ± 3.56 | 84.55 ± 3.78 | 83.9 ± 4.08 | 84.5 ± 3.77 | |
Dermatology | SVM | 98.89 ± 0.55 | 96.57 ± 1.78 | 96.33 ± 1.86 | 96.25 ± 1.89 | 96.67 ± 1.66 |
DT | 98.12 ± 0.64 | 94.09 ± 2.55 | 93.37 ± 3.04 | 93.23 ± 2.67 | 94.35 ± 1.91 | |
BT | 98.87 ± 0.58 | 96.08 ± 2.36 | 95.6 ± 2.94 | 95.53 ± 2.67 | 96.61 ± 1.75 | |
RF | 99.25 ± 0.57 | 97.79 ± 1.8 | 97.45 ± 1.94 | 97.51 ± 1.9 | 97.76 ± 1.71 | |
AdaBoost | 98.87 ± 0.58 | 96.08 ± 2.36 | 95.6 ± 2.94 | 95.53 ± 2.67 | 96.61 ± 1.75 | |
IFPIFSC | 99.03 ± 0.58 | 96.83 ± 2.01 | 96.79 ± 1.84 | 96.67 ± 1.93 | 97.08 ± 1.75 | |
Breast Cancer Wisconsin | SVM | 95.29 ± 2.07 | 95.31 ± 2.36 | 94.67 ± 2.17 | 94.93 ± 2.21 | 95.29 ± 2.07 |
DT | 93.03 ± 2.37 | 92.56 ± 2.61 | 92.67 ± 2.5 | 92.56 ± 2.52 | 93.03 ± 2.37 | |
BT | 96.64 ± 1.8 | 96.92 ± 1.8 | 95.96 ± 2.14 | 96.37 ± 1.95 | 96.64 ± 1.8 | |
RF | 95.9 ± 1.76 | 95.88 ± 1.94 | 95.4 ± 1.94 | 95.6 ± 1.89 | 95.9 ± 1.76 | |
AdaBoost | 96.92 ± 1.65 | 97.12 ± 1.7 | 96.34 ± 1.92 | 96.68 ± 1.79 | 96.92 ± 1.65 | |
IFPIFSC | 95.57 ± 1.59 | 95.4 ± 1.82 | 95.18 ± 1.66 | 95.26 ± 1.69 | 95.57 ± 1.59 | |
HCV Data | SVM | 97.89 ± 0.7 | 70.03 ± 13.49 | 62.44 ± 13.79 | 72.6 ± 7.52 | 94.72 ± 1.75 |
DT | 97.18 ± 0.71 | 63.1 ± 11.34 | 53.11 ± 12.66 | 70.15 ± 8.79 | 92.95 ± 1.79 | |
BT | 97.9 ± 0.52 | 70.93 ± 12.7 | 56.71 ± 11.99 | 75.35 ± 8.03 | 94.75 ± 1.29 | |
RF | 97.76 ± 0.63 | 68.44 ± 14.52 | 54.28 ± 13.14 | 76.44 ± 9.19 | 94.41 ± 1.57 | |
AdaBoost | 97.9 ± 0.52 | 70.93 ± 12.7 | 56.71 ± 11.99 | 75.35 ± 8.03 | 94.75 ± 1.29 | |
IFPIFSC | 97.92 ± 0.48 | 70.4 ± 10.95 | 57.58 ± 11.82 | 72.78 ± 7.15 | 94.8 ± 1.19 | |
Parkinson’s Disease Classification | SVM | 74.6 ± 0.29 | 74.6 ± 0.29 | 50 ± 0 | 85.45 ± 0.19 | 74.6 ± 0.29 |
DT | 80.54 ± 3.35 | 74.46 ± 4.45 | 74.34 ± 4.9 | 74.25 ± 4.58 | 80.54 ± 3.35 | |
BT | 91.28 ± 2.03 | 91.87 ± 2.78 | 84.75 ± 3.55 | 87.44 ± 3.09 | 91.28 ± 2.03 | |
RF | 87.17 ± 2.22 | 87.78 ± 3.73 | 77.34 ± 3.92 | 80.53 ± 3.77 | 87.17 ± 2.22 | |
AdaBoost | 90.29 ± 2.37 | 91 ± 3.08 | 82.89 ± 4.34 | 85.77 ± 3.84 | 90.29 ± 2.37 | |
IFPIFSC | 94.83 ± 1.85 | 93.6 ± 2.27 | 92.69 ± 3.05 | 93.08 ± 2.56 | 94.83 ± 1.85 | |
Mice Protein Expression | SVM | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 |
DT | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
BT | 78.48 ± 0.01 | 13.93 ± 0.03 | 12.5 ± 0 | 24.45 ± 0.05 | 13.93 ± 0.03 | |
RF | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
AdaBoost | 78.48 ± 0.01 | 13.93 ± 0.03 | 12.5 ± 0 | 24.45 ± 0.05 | 13.93 ± 0.03 | |
IFPIFSC | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
Semeion Handwritten Digit | SVM | 97.81 ± 0.78 | 95.05 ± 2.51 | 92.57 ± 3.29 | 93.67 ± 2.36 | 97.81 ± 0.78 |
DT | 93.07 ± 1.53 | 81.28 ± 4.69 | 80.16 ± 3.67 | 80.48 ± 3.57 | 93.07 ± 1.53 | |
BT | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
RF | 96.7 ± 0.88 | 97.19 ± 1.53 | 84.12 ± 4.34 | 89.19 ± 3.31 | 96.7 ± 0.88 | |
AdaBoost | 97.93 ± 1.19 | 96.35 ± 3.61 | 91.88 ± 4.03 | 93.89 ± 3.48 | 97.93 ± 1.19 | |
IFPIFSC | 98.15 ± 0.73 | 97.21 ± 1.91 | 92.27 ± 3.25 | 94.49 ± 2.25 | 98.15 ± 0.73 | |
Car Evaluation | SVM | 92.53 ± 0.7 | 79.4 ± 4.27 | 75.88 ± 4.2 | 76.98 ± 3.69 | 85.07 ± 1.39 |
DT | 97.82 ± 0.48 | 90.42 ± 2.87 | 91.52 ± 3.65 | 90.66 ± 2.75 | 95.64 ± 0.96 | |
BT | 98.51 ± 0.46 | 90.14 ± 3.25 | 94.03 ± 3.13 | 91.67 ± 3.06 | 97.02 ± 0.92 | |
RF | 98.94 ± 0.47 | 94.21 ± 2.84 | 96.29 ± 2.7 | 95.1 ± 2.61 | 97.88 ± 0.94 | |
AdaBoost | 98.51 ± 0.46 | 90.14 ± 3.25 | 94.03 ± 3.13 | 91.67 ± 3.06 | 97.02 ± 0.92 | |
IFPIFSC | 97.97 ± 0.51 | 90.52 ± 3.27 | 90.47 ± 3.45 | 90.21 ± 2.58 | 95.94 ± 1.01 | |
Wireless Indoor Localization | SVM | 99 ± 0.35 | 98.02 ± 0.68 | 97.99 ± 0.69 | 97.99 ± 0.69 | 97.99 ± 0.69 |
DT | 98.52 ± 0.4 | 97.08 ± 0.78 | 97.05 ± 0.8 | 97.04 ± 0.8 | 97.05 ± 0.8 | |
BT | 99.08 ± 0.31 | 98.18 ± 0.61 | 98.16 ± 0.63 | 98.16 ± 0.63 | 98.16 ± 0.63 | |
RF | 99.09 ± 0.34 | 98.21 ± 0.66 | 98.19 ± 0.68 | 98.19 ± 0.68 | 98.19 ± 0.68 | |
AdaBoost | 99.08 ± 0.31 | 98.18 ± 0.61 | 98.16 ± 0.63 | 98.16 ± 0.63 | 98.16 ± 0.63 | |
IFPIFSC | 99.15 ± 0.32 | 98.33 ± 0.64 | 98.31 ± 0.65 | 98.31 ± 0.65 | 98.31 ± 0.65 | |
Mean Performance Results | SVM | 90.99 ± 2.01 | 83.07 ± 4.94 | 77.74 ± 4.96 | 82.68 ± 4.25 | 83.8 ± 3.43 |
DT | 90.41 ± 2.48 | 80.18 ± 5.64 | 77.84 ± 5.57 | 80.75 ± 4.78 | 83.16 ± 4.09 | |
BT | 89.55 ± 2.92 | 76.33 ± 5.89 | 72.12 ± 5.98 | 78.26 ± 4.8 | 77.45 ± 4.64 | |
RF | 93.59 ± 1.96 | 87.85 ± 4.62 | 84.12 ± 4.98 | 87.04 ± 4.02 | 88.85 ± 3.31 | |
AdaBoost | 89.39 ± 3.02 | 76.16 ± 6.07 | 71.5 ± 6.46 | 78.01 ± 4.84 | 77.29 ± 4.74 | |
IFPIFSC | 94.34 ± 1.85 | 88.02 ± 4.26 | 85.86 ± 4.46 | 87.65 ± 3.78 | 89.44 ± 3.09 |
Classifiers | Acc | Pre | Rec | MacF | MicF | Total Rank |
---|---|---|---|---|---|---|
SVM | 1/20 | 1/20 | 2/20 | 1/20 | 1/20 | 6/100 |
DT | 1/20 | 1/20 | 1/20 | 1/20 | 1/20 | 5/100 |
BT | 2/20 | 3/20 | 2/20 | 2/20 | 2/20 | 11/100 |
RF | 7/20 | 8/20 | 6/20 | 8/20 | 7/20 | 36/100 |
AdaBoost | 1/20 | 2/20 | 1/20 | 1/20 | 1/20 | 6/100 |
IFPIFSC | 11/20 | 9/20 | 11/20 | 10/20 | 11/20 | 52/100 |
Classifiers | Acc | Pre | Rec | MacF | MicF |
---|---|---|---|---|---|
IFPIFSC versus SVM | 20 | 19 | 17 | 20 | 20 |
IFPIFSC versus DT | 20 | 20 | 19 | 19 | 20 |
IFPIFSC versus BT | 15 | 15 | 16 | 14 | 15 |
IFPIFSC versus RF | 12 | 11 | 13 | 11 | 12 |
IFPIFSC versus AdaBoost | 16 | 16 | 17 | 15 | 16 |
Classifier | Time Complexity |
---|---|
Fuzzy kNN | |
FSSC | |
FussCyier | |
HDFSSC | |
FPFSCC | |
FPFSNHC | |
FPFS-EC | |
FPFS-AC | |
FPFS-CMC | |
FPFS-kNN(P) | |
FPFS-kNN(S) | |
FPFS-kNN(K) | |
SVM | |
DT | |
BT | |
RF | |
AdaBoost | |
IFPIFSC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memiş, S.; Arslan, B.; Aydın, T.; Enginoğlu, S.; Camcı, Ç. Distance and Similarity Measures of Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Matrices and Their Applications to Data Classification in Supervised Learning. Axioms 2023, 12, 463. https://doi.org/10.3390/axioms12050463
Memiş S, Arslan B, Aydın T, Enginoğlu S, Camcı Ç. Distance and Similarity Measures of Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Matrices and Their Applications to Data Classification in Supervised Learning. Axioms. 2023; 12(5):463. https://doi.org/10.3390/axioms12050463
Chicago/Turabian StyleMemiş, Samet, Burak Arslan, Tuğçe Aydın, Serdar Enginoğlu, and Çetin Camcı. 2023. "Distance and Similarity Measures of Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Matrices and Their Applications to Data Classification in Supervised Learning" Axioms 12, no. 5: 463. https://doi.org/10.3390/axioms12050463
APA StyleMemiş, S., Arslan, B., Aydın, T., Enginoğlu, S., & Camcı, Ç. (2023). Distance and Similarity Measures of Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Matrices and Their Applications to Data Classification in Supervised Learning. Axioms, 12(5), 463. https://doi.org/10.3390/axioms12050463