Norms of a Product of Integral and Composition Operators between Some Bloch-Type Spaces
Abstract
:1. Introduction
2. Auxiliary Results
3. Main Results
- (a)
- If , we have
- (b)
- If , we have
- (a)
- is bounded if and only if
- (b)
- If is bounded, then is compact if and only if
- (c)
- If is bounded, then is compact if and only if
Funding
Data Availability Statement
Conflicts of Interest
References
- Rudin, W. Function Theory in Polydiscs; W. A. Benjamin, Inc.: New York, NY, USA; Amsterdam, The Netherlands, 1969. [Google Scholar]
- Rudin, W. Function Theory in the Unit Ball of ; Grundlehren der Mathematischen Wissenschaften: New York, NY, USA; Springer: Berlin, Germany, 1980. [Google Scholar]
- Bierstedt, K.D.; Summers, W.H. Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. A 1993, 54, 70–79. [Google Scholar] [CrossRef]
- Lusky, W. On the structure of and . Math. Nachr. 1992, 159, 279–289. [Google Scholar] [CrossRef]
- Lusky, W. On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 1995, 59, 309–320. [Google Scholar] [CrossRef]
- Lusky, W. On the isomorphic classification of weighted spaces of holomorphic functions. Acta Univ. Carolin. Math. Phys. 2000, 41, 51–60. [Google Scholar]
- Lusky, W. On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 2006, 175, 19–45. [Google Scholar] [CrossRef]
- Rubel, L.A.; Shields, A.L. The second duals of certain spaces of analytic functions. J. Aust. Math. Soc. 1970, 11, 276–280. [Google Scholar] [CrossRef]
- Shields, A.L.; Williams, D.L. Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 1971, 162, 287–302. [Google Scholar] [CrossRef]
- Liu, Y.M.; Yu, Y.Y. Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball. J. Math. Anal. Appl. 2015, 423, 76–93. [Google Scholar] [CrossRef]
- Stević, S. Norm of weighted composition operators from Bloch space to on the unit ball. Ars Combin. 2008, 88, 125–127. [Google Scholar]
- Stević, S. Norms of some operators from Bergman spaces to weighted and Bloch-type space. Util. Math. 2008, 76, 59–64. [Google Scholar]
- Stević, S. Norm of weighted composition operators from α-Bloch spaces to weighted-type spaces. Appl. Math. Comput. 2009, 215, 818–820. [Google Scholar] [CrossRef]
- Stević, S. Norm of some operators from logarithmic Bloch-type spaces to weighted-type spaces. Appl. Math. Comput. 2012, 218, 11163–11170. [Google Scholar] [CrossRef]
- Yang, W.; Yan, W. Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces. Bull. Korean Math. Soc. 2011, 48, 1195–1205. [Google Scholar] [CrossRef]
- Zhu, X. Weighted composition cperators from F(p,q,s) spaces to spaces. Abst. Appl. Anal. 2009, 2009, 290978. [Google Scholar]
- Zhu, X. Weighted composition operators from weighted Hardy spaces to weighted-type spaces. Demonstr. Math. 2013, 46, 335–344. [Google Scholar] [CrossRef]
- Dunford, N.; Schwartz, J.T. Linear Operators I; Interscience Publishers, Jon Willey and Sons: New York, NY, USA, 1958. [Google Scholar]
- Rudin, W. Functional Analysis, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Trenogin, V.A. Funktsional’niy Analiz; Nauka: Moskva, Russia, 1980. (In Russian) [Google Scholar]
- Malavé-Malavé, R.J.; Ramos-Fernández, J.C. Superposition operators between logarithmic Bloch spaces. Rend. Circ. Mat. Palermo II Ser. 2019, 68, 105–121. [Google Scholar] [CrossRef]
- Stević, S. On operator from the logarithmic Bloch-type space to the mixed-norm space on unit ball. Appl. Math. Comput. 2010, 215, 4248–4255. [Google Scholar]
- Stević, S. Norm and essential norm of an integral-type operator from the logarithmic Bloch space to the Bloch-type space on the unit ball. Math. Methods Appl. Sci. 2022, 45, 11905–11915. [Google Scholar] [CrossRef]
- Hu, Z.J. Extended Cesàro operators on mixed norm spaces. Proc. Am. Math. Soc. 2003, 131, 2171–2179. [Google Scholar] [CrossRef]
- Hu, Z.J. Extended Cesàro operators on the Bloch space in the unit ball of n. Acta Math. Sci. Ser. B Engl. Ed. 2003, 23, 561–566. [Google Scholar] [CrossRef]
- Stević, S. On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball. J. Math. Anal. Appl. 2009, 354, 426–434. [Google Scholar] [CrossRef]
- Benke, G.; Chang, D.C. A note on weighted Bergman spaces and the Cesáro operator. Nagoya Math. J. 2000, 159, 25–43. [Google Scholar] [CrossRef]
- Chang, D.C.; Li, S.; Stević, S. On some integral operators on the unit polydisk and the unit ball. Taiwan J. Math. 2007, 11, 1251–1286. [Google Scholar] [CrossRef]
- Du, J.; Zhu, X. Essential norm of an integral-type operator from ω-Bloch spaces to μ-Zygmund spaces on the unit ball. Opusc. Math. 2018, 38, 829–839. [Google Scholar] [CrossRef]
- Li, H.; Guo, Z. Note on a Li-Stević integral-type operator from mixed-norm spaces to nth weighted spaces. J. Math. Inequal. 2017, 11, 77–85. [Google Scholar] [CrossRef]
- Li, H.; Li, S. Norm of an integral operator on some analytic function spaces on the unit disk. J. Inequal. Math. 2013, 2013, 342. [Google Scholar] [CrossRef]
- Li, S. An integral-type operator from Bloch spaces to Qp spaces in the unit ball. Math. Inequal. Appl. 2012, 15, 959–972. [Google Scholar]
- Li, S. On an integral-type operator from the Bloch space into the QK(p, q) space. Filomat 2012, 26, 331–339. [Google Scholar] [CrossRef]
- Pan, C. On an integral-type operator from Qk(p, q) spaces to α-Bloch spaces. Filomat 2011, 25, 163–173. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, L.; Shu, Y. On Stević-Sharma operators from the mixed-norm spaces to Zygmund-type spaces. Math. Inequal. Appl. 2021, 24, 445–461. [Google Scholar]
- Zhu, X. Generalized weighted composition operators on weighted Bergman spaces. Numer. Funct. Anal. Opt. 2009, 30, 881–893. [Google Scholar] [CrossRef]
- Pelczynski, A. Norms of classical operators in function spaces. Astérisque 1985, 131, 137–162. [Google Scholar]
- Rudin, W. Real and Complex Analysis, 3rd ed.; Higher Mathematics Series; McGraw-Hill Education: London, UK; New York, NY, USA; Sidney, Australia, 1976. [Google Scholar]
- Trenogin, V.A.; Pisarevskiy, B.M.; Soboleva, T.S. Zadachi i Uprazhneniya po Funktsional’nomu Analizu; Nauka: Moskva, Russia, 1984. (In Russian) [Google Scholar]
- Schwartz, H.J. Composition Operators on Hp. Ph.D. Thesis, University of Toledo, Toledo, OH, USA, 1969. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stević, S. Norms of a Product of Integral and Composition Operators between Some Bloch-Type Spaces. Axioms 2023, 12, 491. https://doi.org/10.3390/axioms12050491
Stević S. Norms of a Product of Integral and Composition Operators between Some Bloch-Type Spaces. Axioms. 2023; 12(5):491. https://doi.org/10.3390/axioms12050491
Chicago/Turabian StyleStević, Stevo. 2023. "Norms of a Product of Integral and Composition Operators between Some Bloch-Type Spaces" Axioms 12, no. 5: 491. https://doi.org/10.3390/axioms12050491
APA StyleStević, S. (2023). Norms of a Product of Integral and Composition Operators between Some Bloch-Type Spaces. Axioms, 12(5), 491. https://doi.org/10.3390/axioms12050491