Automatic Classification of Hypertensive Retinopathy by Gray Wolf Optimization Algorithm and Naïve Bayes Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Collection and Preprocessing
2.2. Fundus Segmentation
Algorithm 1: Kurtosis-based, multi-thresholding whale optimization algorithm. |
Input: Enhanced retina Image output: Segmented retina image |
1. Initialize initial solution xi (i = 1, …, 250) 2. Evaluate the fitness value using equation ( 3. Initialize Y* while (d < maximum iterations) for each search agent update a, A, C, l and p 4. if (p < 0.5); (|A| < 1) Update the current search agent equation using the equation 5. else if (|A| > 1) select xrand and update the current search agent position using the equation 6. else if (p ≥ 0.5) update current search position using the equation = . Cos (2) + repeat for all search space agents 7. Evaluate the search agent fitness for each and every search agent. 8. Segment the retina image with best value which maximizes the kurtosis |
2.3. Feature Extraction and Selection
- (a)
- =
- (b)
- = + 4
- (c)
- = +
- (d)
- = +
- (e)
- = [] + )[]
- (f)
- = [] + )
- (g)
- = [] + )[]
2.4. Classification Using Improved Naïve Bayes Classifier
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; De Ferranti, S.; Després, J.P.; Fullerton, H.J.; Howard, V.J.; et al. Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef] [Green Version]
- Mensah, G.A. Hypertension and Target Organ Damage: Don’t Believe Everything You Think! Ethn Dis. 2016, 26, 275–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundström, J.; Neovius, M.; Tynelius, P.; Rasmussen, F. Association of blood pressure in late adolescence with subsequent mortality: Cohort study of Swedish male conscripts. BMJ 2011, 342, d643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battistoni, A.; Canichella, F.; Pignatelli, G.; Ferrucci, A.; Tocci, G.; Volpe, M. Hypertension in young people: Epidemiology, diagnostic assessment and therapeutic approach. High Blood Press. Cardiovasc. Prev. 2015, 22, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Mensah, G.A.; Croft, J.B.; Giles, W.H. The heart, kidney, and brain as target organs in hypertension. Cardiol. Clin. 2002, 20, 225–247. [Google Scholar] [CrossRef]
- Rodrigues, M.B.; Da Nobrega, R.V.M.; Alves, S.S.A.; Reboucas Filho, P.P.; Duarte, J.B.F.; Sangaiah, A.K.; De Albuquerque, V.H.C. Health of things algorithms for malignancy level classification of lung nodules. IEEE Access 2018, 6, 18592–18601. [Google Scholar] [CrossRef]
- Wong, T.; Mitchell, P. The eye in hypertension. Lancet 2007, 369, 425–435. [Google Scholar] [CrossRef]
- Sambandam, R.K.; Jayaraman, S. Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital images. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Khairuzzaman, A.K.M.; Chaudhury, S. Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst. Appl. 2017, 86, 64–76. [Google Scholar] [CrossRef]
- Usher, D.; Dumskyj, M.; Himaga, M.; Williamson, T.H.; Nussey, S.; Boyce, J. Automated detection of diabetic retinopathy in digital retinal images: A tool for diabetic retinopathy screening. Diabet. Med. 2004, 21, 84–90. [Google Scholar] [CrossRef]
- Manikis, G.C.; Sakkalis, V.; Zabulis, X.; Karamaounas, P.; Triantafyllou, A.; Douma, S.; Zamboulis, C.; Marias, K. An image analysis framework for the early assessment of hypertensive retinopathy signs. In Proceedings of the 2011 E-Health and Bioengineering Conference (EHB), Iași, Romania, 24–26 November 2011; IEEE: Iași, Romania, 2011; pp. 1–6. [Google Scholar]
- Narasimhan, K.; Neha, V.C.; Vijayarekha, K. Hypertensive Retinopathy Diagnosis from Fundus Images by Estimation of Avr. Procedia Eng. 2012, 38, 980–993. [Google Scholar] [CrossRef] [Green Version]
- Muramatsu, C.; Hatanaka, Y.; Iwase, T.; Hara, T.; Fujita, H. Automated detection and classification of major retinal vessels for determination of diameter ratio of arteries and veins. In Medical Imaging 2010: Computer-Aided Diagnosis; SPIE: Bellingham, WA, USA, 2010; Volume 7624, pp. 153–160. [Google Scholar]
- Mirsharif, Q.; Tajeripour, F.; Pourreza, H. Automated characterization of blood vessels as arteries and veins in retinal images. Comput. Med. Imaging Graph. 2013, 37, 607–617. [Google Scholar] [CrossRef]
- Kaggle. Available online: https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k (accessed on 4 February 2023).
- DRIVE. Available online: https://drive.grand-challenge.org/ (accessed on 4 February 2023).
- STARE. Available online: https://cecas.clemson.edu/~ahoover/stare/ (accessed on 4 February 2023).
- VICAVR. Available online: http://www.varpa.es/research/ophtalmology.html#vicavr (accessed on 4 February 2023).
- Quelhas, P.; Marcuzzo, M.; Mendonça, A.M.; Campilho, A. Cell nuclei and cytoplasm joint segmentation using the sliding band filter. IEEE Trans. Med. Imaging 2010, 29, 1463–1473. [Google Scholar] [CrossRef]
- Kulkarni, R.V.; Venayagamoorthy, G.K. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Trans. Syst. Man Cybern. Part C 2010, 40, 663–675. [Google Scholar] [CrossRef]
- Krause, J.; Gulshan, V.; Rahimy, E.; Karth, P.; Widner, K.; Corrado, G.S.; Peng, L.; Webster, D.R. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 2018, 125, 1264–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binkley, K.J.; Hagiwara, M. Balancing exploitation and exploration in particle swarm optimization: Velocity-based reinitialization. Inf. Media Technol. 2008, 3, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Software 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Al Shalchi, N.F.A.; Rahebi, J. Human retinal optic disc detection with grasshopper optimization algorithm. Multimed. Tools Appl. 2022, 81, 24937–24955. [Google Scholar] [CrossRef]
- Arnay, R.; Fumero, F.; Sigut, J. Ant colony optimization-based method for optic cup segmentation in retinal images. Appl. Soft Comput. 2017, 52, 409–417. [Google Scholar] [CrossRef]
- Jadhav, A.S.; Patil, P.B.; Biradar, S. Optimal feature selection-based diabetic retinopathy detection using improved rider optimization algorithm enabled with deep learning. Evol. Intell. 2021, 14, 1431–1448. [Google Scholar] [CrossRef]
- Chakraborty, S.; Pradhan, R.; Ashour, A.S.; Moraru, L.; Dey, N. Grey-Wolf-Based Wang’s Demons for retinal image registration. Entropy 2020, 22, 659. [Google Scholar] [CrossRef] [PubMed]
- Decencière, E.; Zhang, X.; Cazuguel, G.; Lay, B.; Cochener, B.; Trone, C.; Gain, P.; Ordonez, R.; Massin, P.; Erginay, A.; et al. Feedback on a publicly distributed image database: The Messidor database. Image Anal. Stereol. 2014, 33, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Agurto, C.; Joshi, V.; Nemeth, S.; Soliz, P.; Barriga, S. Detection of hypertensive retinopathy using vessel measurements and textural features. In Proceedings of the 2014 36th annual international conference of the IEEE engineering in medicine and biology society, Chicago, IL, USA, 26–30 August 2014; IEEE: Chicago, IL, USA, 2014; pp. 5406–5409. [Google Scholar]
- Irshad, S.; Akram, M.U. Classification of retinal vessels into arteries and veins for detection of hypertensive retinopathy. In Proceedings of the 2014 Cairo International Biomedical Engineering Conference (CIBEC), Giza, Egypt, 11–13 December 2014; IEEE: Giza, Egypt, 2014; pp. 133–136. [Google Scholar]
- Akbar, S.; Akram, M.U.; Sharif, M.; Tariq, A.; ullah Yasin, U. Arteriovenous ratio and papilledema based hybrid decision support system for detection and grading of hypertensive retinopathy. Comput. Methods Programs Biomed. 2018, 154, 123–141. [Google Scholar] [CrossRef]
- Domingos, P.; Pazzani, M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 1997, 29, 103–130. [Google Scholar] [CrossRef]
- Hellerstein, J.L.; Jayram, T.S.; Rish, I. Recognizing End-User Transactions in Performance Management; IBM Thomas J. Watson Research Division: Hawthorne, NY, USA, 2000; pp. 596–602. [Google Scholar]
- Jain, A.K.; Waller, W.G. On the optimal number of features in the classification of multivariate Gaussian data. Pattern Recognit. 1978, 10, 365–374. [Google Scholar] [CrossRef]
- Peng, H.; Ying, C.; Tan, S.; Hu, B.; Sun, Z. An improved feature selection algorithm based on ant colony optimization. IEEE Access 2018, 6, 69203–69209. [Google Scholar] [CrossRef]
Category | Count |
---|---|
Normal | 200 |
Mild | 400 |
Moderate | 200 |
Severe | 200 |
Malignant | 200 |
N | Feature | Formula |
---|---|---|
F1 | Angular Second Moment | |
F2 | Contrast | |
F3 | Correlation | |
F4 | Inverse difference moment | |
F5 | Sum average | |
F6 | Sum variance | |
F7 | Sum Entropy | |
F8 | Entropy | |
F9 | Difference variance | Variance of |
F10 | Difference entropy | |
F11 | Info. Measure of correlation | |
F12 | Max. corel.coefficient | (Square of the eigen value B)1/2; B = |
Threshold | Accuracy | Processing Time (ms) |
---|---|---|
2 | 98.67 | 0.2474 |
3 | 98.85 | 0.2479 |
4 | 99.04 | 0.2482 |
5 | 99.36 | 0.2485 |
Threshold Level | PSO | WOA | KMWWOA |
---|---|---|---|
2 | 96.34 | 97.25 | 98.67 |
3 | 96.79 | 97.37 | 98.85 |
4 | 97.35 | 98.33 | 99.04 |
5 | 97.47 | 98.62 | 99.36 |
PSO | Proposed | ||||
---|---|---|---|---|---|
Population Size | Iterations | Avg Threshold Value | Population Size | Iterations | Best Threshold Value |
50 | 1 25 50 75 100 150 200 | 31 28 27 32 35 27 25 | 50 | 1 25 50 75 100 150 200 | 24 21 20 26 25 25 25 |
100 | 1 25 50 75 100 150 200 | 21 25 26 21 22 25 25 | 100 | 1 25 50 75 100 150 200 | 18 21 25 25 25 25 25 |
200 |
Model | Accuracy | Sensitivity | Specificity |
---|---|---|---|
GrasshopperOA [28] | 95.24 | 82.64 | 97.42 |
AntCO [29] | 94.63 | 79.46 | 97.21 |
Rider OA [30] | 96.72 | 89.46 | 97.46 |
GreyWOA [31] | 97.36 | 91.63 | 98.42 |
Proposed | 99.36 | 93.56 | 99.85 |
Project | Classifier | Accuracy | Precision | Recall (%) | F-Score (%) | AUC | Class |
---|---|---|---|---|---|---|---|
Agurto et al. [33] | Partial Least Squares | 96 | 87 | 89 | 88 | 0.97 | No HR |
96 | 94 | 94 | 94 | 0.97 | Mild | ||
95 | 86 | 83 | 84 | 0.95 | Moderate | ||
95 | 83 | 87 | 85 | 0.95 | Severe | ||
96 | 89 | 84 | 87 | 0.96 | Malignant | ||
Irshad S et al. [34] | SVM | 98 | 94 | 95 | 95 | 0.97 | No HR |
97 | 95 | 97 | 96 | 0.97 | Mild | ||
97 | 92 | 89 | 90 | 0.98 | Moderate | ||
97 | 90 | 94 | 92 | 0.98 | Severe | ||
97 | 96 | 89 | 92 | 0.97 | Malignant | ||
Akbar et al. [35] | SVM-RBF | 99 | 99 | 97 | 96 | 0.98 | No HR |
99 | 99 | 99 | 99 | 0.98 | Mild | ||
99 | 97 | 95 | 96 | 0.98 | Moderate | ||
99 | 97 | 96 | 97 | 0.98 | Severe | ||
99 | 96 | 98 | 97 | 0.99 | Malignant | ||
Proposed | Improved Naïve Bayes | 100 | 99 | 99 | 99 | 0.99 | No HR |
100 | 100 | 100 | 100 | 0.99 | Mild | ||
100 | 99 | 100 | 99 | 0.99 | Moderate | ||
100 | 99 | 99 | 99 | 0.99 | Severe | ||
100 | 100 | 99 | 100 | 0.99 | Malignant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhimavarapu, U.; Battineni, G.; Chintalapudi, N. Automatic Classification of Hypertensive Retinopathy by Gray Wolf Optimization Algorithm and Naïve Bayes Classification. Axioms 2023, 12, 625. https://doi.org/10.3390/axioms12070625
Bhimavarapu U, Battineni G, Chintalapudi N. Automatic Classification of Hypertensive Retinopathy by Gray Wolf Optimization Algorithm and Naïve Bayes Classification. Axioms. 2023; 12(7):625. https://doi.org/10.3390/axioms12070625
Chicago/Turabian StyleBhimavarapu, Usharani, Gopi Battineni, and Nalini Chintalapudi. 2023. "Automatic Classification of Hypertensive Retinopathy by Gray Wolf Optimization Algorithm and Naïve Bayes Classification" Axioms 12, no. 7: 625. https://doi.org/10.3390/axioms12070625
APA StyleBhimavarapu, U., Battineni, G., & Chintalapudi, N. (2023). Automatic Classification of Hypertensive Retinopathy by Gray Wolf Optimization Algorithm and Naïve Bayes Classification. Axioms, 12(7), 625. https://doi.org/10.3390/axioms12070625