Representation of Some Ratios of Horn’s Hypergeometric Functions H7 by Continued Fractions
Abstract
:1. Introduction
2. Expansions
3. Convergence of Continued Fraction Expansions
- (A)
- The continued fraction (9), whose coefficients are defined by (10), converges uniformly on every compact subset of (15) to a function holomorphic in
- (B)
- The function is an analytic continuation of (8) in the domain
- (A)
- The continued fraction (9), whose coefficients are defined by (13), converges uniformly on every compact subset of (16) to a function holomorphic in
- (B)
- The function is an analytic continuation of in the domain
- (A)
- The continued fraction (9), whose coefficients are defined by (14), converges uniformly on every compact subset of (15) to a function holomorphic in
- (B)
- The function is an analytic continuation of in the domain
4. Numerical Experiments
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appell, P. Sur les séries hyper géométriques de deux variables et sur des équations différentielles lineaires aux dérivées partielles. C. R. Acad. Sci. Paris 1880, 90, 296–298,731–734. [Google Scholar]
- Appell, P. Sur les fonctions hypergéométriques de deux variables. J. Math. Pures Appl. 1882, 8, 173–216. [Google Scholar]
- Horn, J. Hypergeometrische Funktionen zweier Veränderlichen. Math. Ann. 1931, 105, 381–407. [Google Scholar] [CrossRef]
- Horn, J. Hypergeometrische Funktionen zweier Veränderlichen. Math. Ann. 1935, 111, 638–677. [Google Scholar] [CrossRef]
- Horn, J. Hypergeometrische Funktionen zweier Veränderlichen. Math. Ann. 1937, 113, 242–291. [Google Scholar] [CrossRef]
- Lauricella, G. Sulle funzioni ipergeometriche a piu variabili. Rend. Circ. Matem. 1893, 7, 111–158. [Google Scholar] [CrossRef]
- Bailey, W.N. Generalised Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Co.: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Exton, H. Multiple Hypergeometric Functions and Applications; Horwood, E., Ed.; Halsted Press: Chichester, UK, 1976. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Horwood, E., Ed.; Halsted Press: Chichester, UK, 1985. [Google Scholar]
- Brychkov, Y.A.; Savischenko, N.V. On some formulas for the Horn functions H4(a,b;c,c′;w,z) and H7c(a,b;c,c′;w,z). Integral Transform. Spec. Funct. 2021, 32, 969–987. [Google Scholar] [CrossRef]
- Chetry, A.S.; Kalita, G. Lauricella hypergeometric series FA(n) over finite fields. Ramanujan J. 2022, 57, 1335–1354. [Google Scholar] [CrossRef]
- Kim, I.; Rathie, A.K. A Note on Certain General Transformation Formulas for the Appell and the Horn Functions. Symmetry 2023, 15, 696. [Google Scholar] [CrossRef]
- Shpot, M.A. A massive Feynman integral and some reduction relations for Appell function. J. Math. Phys. 2007, 48, 123512–123525. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Savischenko, N. On some formulas for the Horn functions H6(a,b;c;w,z) and H8(c)(a;b;w,z). Integral Transform. Spec. Funct. 2021, 33, 651–667. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Savischenko, N.V. On some formulas for the Horn functions H3(a,b;c;w,z),H6(c)(a;c;w,z) and Humbert function Φ3(b;c;w,z). Integral Transform. Spec. Funct. 2020, 32, 661–676. [Google Scholar] [CrossRef]
- Chelo, F.; López, J.L. Asymptotic expansions of the Lauricella hypergeometric function FD. J. Comput. Appl. Math. 2003, 151, 235–256. [Google Scholar]
- Mimachi, K. Integral representations of Appell’s F2,F3, Horn’s H2 and Olsson’s Fp functions. Kyushu J. Math. 2020, 74, 1–13. [Google Scholar] [CrossRef]
- Antonova, T.; Dmytryshyn, R.; Sharyn, S. Generalized hypergeometric function 3F2 ratios and branched continued fraction expansions. Axioms 2021, 10, 310. [Google Scholar] [CrossRef]
- Antonova, T.M. On convergence of branched continued fraction expansions of Horn’s hypergeometric function H3 ratios. Carpathian Math. Publ. 2021, 13, 642–650. [Google Scholar] [CrossRef]
- Bodnar, D.I.; Manzii, O.S. Expansion of the ratio of Appel hypergeometric functions F3 into a branching continued fraction and its limit behavior. J. Math. Sci. 2001, 107, 3550–3554. [Google Scholar] [CrossRef]
- Hoyenko, N.; Hladun, V.; Manzij, O. On the infinite remains of the Nörlund branched continued fraction for Appell hypergeometric functions. Carpathian Math. Publ. 2014, 6, 11–25. (In Ukrainian) [Google Scholar] [CrossRef] [Green Version]
- Hladun, V.R.; Hoyenko, N.P.; Manzij, O.S.; Ventyk, L. On convergence of function F4(1,2;2,2;z1,z2) expansion into a branched continued fraction. Math. Model. Comput. 2022, 9, 767–778. [Google Scholar] [CrossRef]
- Manzii, O.S. Investigation of expansion of the ratio of Appel hypergeometric functions F3 into a branching continued fraction. Approx. Theor. Appl. Pr. Inst. Math. NAS Ukr. 2000, 31, 344–353. (In Ukrainian) [Google Scholar]
- Petreolle, M.; Sokal, A.D. Lattice paths and branched continued fractions II. Multivariate Lah polynomials and Lah symmetric functions. Eur. J. Combin. 2021, 92, 103235. [Google Scholar] [CrossRef]
- Petreolle, M.; Sokal, A.D.; Zhu, B.X. Lattice paths and branched continued fractions: An infinite sequence of generalizations of the Stieltjes-Rogers and Thron-Rogers polynomials, with coefficientwise Hankel-total positivity. arXiv 2020, arXiv:1807.03271v2. [Google Scholar]
- Antonova, T.; Dmytryshyn, R.; Lutsiv, I.-A.; Sharyn, S. On some branched continued fraction expansions for Horn’s hypergeometric function H4(a,b;c,d;z1,z2) ratios. Axioms 2023, 12, 299. [Google Scholar] [CrossRef]
- Bodnar, D.I. Branched Continued Fractions; Naukova Dumka: Kyiv, Ukraine, 1986. (In Russian) [Google Scholar]
- Dmytryshyn, R.I.; Lutsiv, I.-A.V. Three- and four-term recurrence relations for Horn’s hypergeometric function H4. Res. Math. 2022, 30, 21–29. [Google Scholar] [CrossRef]
- Antonova, T.; Dmytryshyn, R.; Kravtsiv, V. Branched continued fraction expansions of Horn’s hypergeometric function H3 ratios. Mathematics 2021, 9, 148. [Google Scholar] [CrossRef]
- Antonova, T.; Dmytryshyn, R.; Sharyn, S. Branched continued fraction representations of ratios of Horn’s confluent function H6. Constr. Math. Anal. 2023, 6, 22–37. [Google Scholar]
- Jones, W.B.; Thron, W.J. Continued Fractions: Analytic Theory and Applications; Addison-Wesley Pub. Co.: Reading, MA, USA, 1980. [Google Scholar]
- Bodnar, D.I. Expansion of a ratio of hypergeometric functions of two variables in branching continued fractions. J. Math. Sci. 1993, 64, 1155–1158. [Google Scholar] [CrossRef]
- Bodnar, D.I. Multidimensional C-fractions. J. Math. Sci. 1998, 90, 2352–2359. [Google Scholar] [CrossRef]
- Bodnarchuk, P.I.; Skorobogatko, V.Y. Branched Continued Fractions and Their Applications; Naukova Dumka: Kyiv, Ukraine, 1974. (In Ukrainian) [Google Scholar]
- Dmytryshyn, R.I. Two-dimensional generalization of the Rutishauser qd-algorithm. J. Math. Sci. 2015, 208, 301–309. [Google Scholar] [CrossRef]
- Dmytryshyn, R.I.; Sharyn, S.V. Approximation of functions of several variables by multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2021, 13, 592–607. [Google Scholar] [CrossRef]
- Hoyenko, N.P. Correspondence principle and convergence of sequences of analytic functions of several variables. Mat. Visn. Nauk. Tov. Im. Shevchenka. 2007, 4, 42–48. (In Ukrainian) [Google Scholar]
- Hoyenko, N.P.; Manzij, O.S. Expansion of Appel F1 and Lauricella FD(N) hypergeometric functions into branched continued fractions. Visnyk Lviv. Univ. Ser. Mech.-Math. 1997, 48, 17–26. (In Ukrainian) [Google Scholar]
- Manzii, O.S. On the approximation of an Appell hypergeometric function by a branched continued fraction. J. Math. Sci. 1998, 90, 2376–2380. [Google Scholar] [CrossRef]
- Bohner, M.; Cuchta, T. The generalized hypergeometric difference equation. Demonstr. Math. 2018, 51, 62–75. [Google Scholar] [CrossRef]
z | (18) | (19) | (17) |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonova, T.; Dmytryshyn, R.; Kril, P.; Sharyn, S. Representation of Some Ratios of Horn’s Hypergeometric Functions H7 by Continued Fractions. Axioms 2023, 12, 738. https://doi.org/10.3390/axioms12080738
Antonova T, Dmytryshyn R, Kril P, Sharyn S. Representation of Some Ratios of Horn’s Hypergeometric Functions H7 by Continued Fractions. Axioms. 2023; 12(8):738. https://doi.org/10.3390/axioms12080738
Chicago/Turabian StyleAntonova, Tamara, Roman Dmytryshyn, Pavlo Kril, and Serhii Sharyn. 2023. "Representation of Some Ratios of Horn’s Hypergeometric Functions H7 by Continued Fractions" Axioms 12, no. 8: 738. https://doi.org/10.3390/axioms12080738
APA StyleAntonova, T., Dmytryshyn, R., Kril, P., & Sharyn, S. (2023). Representation of Some Ratios of Horn’s Hypergeometric Functions H7 by Continued Fractions. Axioms, 12(8), 738. https://doi.org/10.3390/axioms12080738