Applications of Fuzzy Differential Subordination for a New Subclass of Analytic Functions
Abstract
:1. Introduction and Definitions
2. Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Is there a need for fuzzy logic. Inf. Sci. 2008, 178, 2751–2779. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy-set-theoretic interpretation of linguistic hedges. J. Cybern. 1972, 2, 4–34. [Google Scholar] [CrossRef]
- Hirota, K. Concepts of probabilistic sets, Fuzzy event. J. Math. Anna. Appl. 1981, 23, 421–427. [Google Scholar]
- Yager, R.R. On the theory of bags. Int. J. Gener. Syst. 1986, 13, 23–37. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Dzitac, I.; Filip, F.G.; Manolescu, M.J. Fuzzy logic is not fuzzy. world-renowned computer scientist Lotfi A. Zadeh. Int. J. Comp. Commun. Control 2017, 12, 748–789. [Google Scholar] [CrossRef]
- Dzitac, S.; Nădăban, S. Soft computing for decision-making in fuzzy environments: A tribute to Professor Ioan Dzitac. Mathematics 2021, 9, 1701. [Google Scholar] [CrossRef]
- Zadeh, L.A.; Tufis, D.; Filip, F.G.; Dzitac, I. From Natural Language to Soft Computing: New Paradigms in Artificial Intelligence; Editing House of Romanian Academy: Bucharest, Romania, 2008. [Google Scholar]
- Oros, G.I.; Oros, G. The notion of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apulensis 2012, 3, 55–64. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Michig. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Lupas, A.A. A note on special fuzzy differential subordinations using generalized Sălăgean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1476–1483. [Google Scholar]
- Lupas, A.A.; Oros, G. On special fuzzy differential subordinations using Sălăgean and Ruscheweyh operators. Appl. Math. Comput. 2015, 261, 119–127. [Google Scholar]
- Venter, A.O. On special fuzzy differential subordination using Ruscheweyh operator. Analele Univ. Oradea Fasc. Mat. 2015, 22, 167–176. [Google Scholar]
- El-Deeb, S.M.; Lupas, A.A. Fuzzy differential subordinations associated with an integral operator. An. Univ. Oradea Fasc. Mat. 2020, 27, 133–140. [Google Scholar]
- El-Deeb, S.M.; Oros, G.I. Fuzzy differential subordinations connected with the linear operator. Math. Bohem. 2021, 146, 397–406. [Google Scholar] [CrossRef]
- Oros, G.I. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021, 70, 229–240. [Google Scholar] [CrossRef]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- Lupa̧s, A.A. On special differential subordinations using S ălăgean and Ruscheweyh operators. Math. Inequal. Appl. 2009, 12, 781–790. [Google Scholar]
- Shkalikov, A.A. Perturbations of self-adjoint and normal operators with discrete spectrum. Russ. Math. Surv. 2016, 71, 907–964. [Google Scholar] [CrossRef]
- Kukushkin, M.V. On One Method of Studying Spectral Properties of Non-selfadjoint Operators. Abstr. Appl. Anal. 2020, 2020, 1461647. [Google Scholar] [CrossRef]
- Lupas, A.A. On a certain subclass of analytic functions defined by Sălăgean and Ruscheweyh operators. J. Math. Appl. 2009, 31, 67–76. [Google Scholar]
- Lupa̧s, A.A.; Oros, G.I. New applications of Sălă gean and Ruscheweyh operators for obtaining fuzzy differential subordinations. Mathematics 2021, 9, 2000. [Google Scholar] [CrossRef]
- Noor, K.I. On new classes of integral operators. J. Natur. Geom. 1999, 16, 71–80. [Google Scholar]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Amer. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Oros, G.I.; Dzitac, S. Applications of subordination chains and fractional integral in fuzzy differential subordinations. Mathematics 2022, 10, 1690. [Google Scholar] [CrossRef]
- Alb Lupas, A. Fuzzy differential sandwich theorems involving the fractional integral of confluent hypergeometric function. Symmetry 2021, 13, 1992. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Ind. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Ro, J.-S.; Tchier, F.; Khan, N. Applications of Fuzzy Differential Subordination for a New Subclass of Analytic Functions. Axioms 2023, 12, 745. https://doi.org/10.3390/axioms12080745
Khan S, Ro J-S, Tchier F, Khan N. Applications of Fuzzy Differential Subordination for a New Subclass of Analytic Functions. Axioms. 2023; 12(8):745. https://doi.org/10.3390/axioms12080745
Chicago/Turabian StyleKhan, Shahid, Jong-Suk Ro, Fairouz Tchier, and Nazar Khan. 2023. "Applications of Fuzzy Differential Subordination for a New Subclass of Analytic Functions" Axioms 12, no. 8: 745. https://doi.org/10.3390/axioms12080745
APA StyleKhan, S., Ro, J. -S., Tchier, F., & Khan, N. (2023). Applications of Fuzzy Differential Subordination for a New Subclass of Analytic Functions. Axioms, 12(8), 745. https://doi.org/10.3390/axioms12080745