New Equivalents of Kurepa’s Hypothesis for Left Factorial †
Abstract
:1. Introduction and Preliminaries
1.1. Historical Overview and Current State of Research
1.2. Preliminaries
2. Results
2.1. Equivalents of Kurepa’s Hypothesis
2.2. Some Remarks on the Assumption That Kurepa’s Hypothesis Is Not Correct
2.3. Notes on Derangement Numbers
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weil, A. Number Theory: An Approach through History from Hammurapi to Legendre; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Kurepa, Đ. On the left factorial function !n. Math. Balk. 1971, 1, 147–153. [Google Scholar]
- Guy, R. Unsolved Problems in Number Theory; Springer: Berlin/Heidelberg, Gernamy; New York, NY, USA, 1981. [Google Scholar]
- Koninck, J.M.D.; Mercier, A. 1001 Problems in Classical Number Theory; American Mathematical Society: Providence, RI, USA, 2007. [Google Scholar]
- Sándor, J.; Crstici, B. Handbook of Number Theory II; Kluwer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Kellner, B.C. Some remarks on Kurepa’s left factorial. arXiv 2004, arXiv:math/0410477v1. [Google Scholar]
- Kohnen, W. A remark on the left-factorial hypothesis, Publikacije Elektrotehniekog fakulteta. Serija Mat. 1998, 9, 51–53. [Google Scholar]
- Petojević, A. On Kurepa’s hypothesis for left factorial. Filomat 1998, 12, 29–37. [Google Scholar]
- Petojević, A.; Žižović, M.; Cvejić, S.D. Difference equations and new equivalents of the Kurepa hypothesis. Math. Morav. 1999, 3, 39–42. [Google Scholar]
- Sun, Z.-W.; Zagier, D. On a curious property of Bell numbers. Bull. Austr. Math. Soc. 2011, 84, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Šami, Z. On the M-hypothesis of Dj. Kurepa. Math. Balk. 1974, 4, 530–532. [Google Scholar]
- Šami, Z. A sequence of numbers . Glasnik Math. 1988, 3–13. [Google Scholar]
- Andrejić, V.; Tatarević, M. Searching for a counter example to Kurepa’s conjecture. Math. Comput. 2016, 85, 3061–3068. [Google Scholar] [CrossRef] [Green Version]
- Gallot, Y. Is the Number of Primes Finite Available online: http://yves.gallot.pagesperso-orange.fr/papers/lfact.html (accessed on 6 June 2003).
- Ilijašević, I. Verification of Kurepa’s left factorial conjecture for primes up to 231. IPSI Trans. Internet Res. (Former IPSI BgD Trans. Internet Res.) 2015, 11, 7–12. [Google Scholar]
- Mijajlović, Ž. On some formulas involving !n and the verifcation of the !n-hypothesis by use of computers. Publ. Inst. Math. (Nouv. Sáerie) 1990, 47, 24–32. [Google Scholar]
- Tatarević, M. Searching for a Counter Example to the Kurepa’s Left Factorial Hypothesis . Available online: http://mtatar.wordpress.com/2011/07/30/kurepa/ (accessed on 24 June 2022).
- Živković, M. The number of primes is finite Math. Comp. 1999, 68, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Andrejić, V.; Bostan, A.; Tatarević, M. Improved algorithms for left factorial residues. Inf. Process. Lett. V 2021, 167, 106078. [Google Scholar] [CrossRef]
- Rajkumar, R. Searching for a Counter Example to Kurepa’s Conjecture in Average Polynomialtime. Master’s Thesis, School of Mathematics and Statistics, UNSW Sydney, Sydney, Australia, 2019. [Google Scholar]
- Milovanović, G.V. A sequence of Kurepa’s functions. Sci. Rev. 1996, 19–20, 137–146. [Google Scholar]
- Milovanović, G.V.; Petojević, A. Generalized factorial function, numbers and polynomials and related problems. Math. Balk. New Ser. 2002, 16, 113–130. [Google Scholar]
- Šami, Z. On generalization if functions !n and n! Publ. Inst. Math. 1997, 60, 5–14. [Google Scholar]
- Andrejić, V.; Tatarević, M. On distinct residues of factorials. Publ. Inst. Math. 2016, 100, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Kurepa, Đ. Left factorial function in complex domain. Math. Balc. 1973, 3, 297–307. [Google Scholar]
- Milovanović, G.V. A Expansions of the Kurepa function. Publ. Inst. Math. 1995, 57, 81–90. [Google Scholar]
- Slavić, D.V. On the left factorial function of the complex argument. Math. Balk. 1973, 3, 472–477. [Google Scholar]
- Carlitz, L. A note on the left factorial function. Math. Balk. 1975, 5, 37–42. [Google Scholar]
- Matala-aho, T.; Zudilin, W. Euler’s factorial series and global relations. J. Number Theory 2018, 186, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Meštrović, R. The Kurepa-Vandermonde matrices arising from Kurepa’s left factorial hypothesis. Filomat 2015, 29, 2207–2215. [Google Scholar] [CrossRef]
- Vladimirov, V.S. Left factorials, Bernoulli numbers, and the Kurepa conjecture. Publ. Inst. Math. Beogr. 2002, 72, 11–22. [Google Scholar] [CrossRef]
- Ivić, A.; Mijajlović, Ż. On Kurepa problems in number theory. Publ. Inst. Math. 1995, 57, 19–28. [Google Scholar]
- Kurepa, Đ. On some new left factorial proposition. Math. Balc. 1974, 4, 383–386. [Google Scholar]
- Malešević, B. Some considerations in connection with Kurepa’s function, Publikacije Elektrotehniekog fakulteta. Ser. Mat. 2003, 14, 26–36. [Google Scholar]
- Malešević, B. Some inequalities for Kurepa’s function. J. Inequalities Pure Appl. Math. 2004, 5, 84. [Google Scholar]
- Malešević, B. Some inequalities for alternating Kurepa’s function, Publikacije Elektrotehniekog fakulteta. Ser. Mat. 2005, 16, 7–76. [Google Scholar]
- Malešević, B. Some considerations in connection with alternating Kurepa’s function. Integral Transform. Spec. Funct. 2008, 19, 747–756. [Google Scholar] [CrossRef]
- Stanković, J. Über einige Relationen zwischen Fakultäten und den linken Fakultäten. Math. Balk. 1973, 3, 488–497. [Google Scholar]
- Stanković, J.; Žižovixcx, M. Noch einige Relationen zwischen den Fakultäten und den linken Fakultäten. Math. Balk. 1974, 4, 555–559. [Google Scholar]
- Petojević, A.; Žižović, M. Trees and the Kurepa hypothesis for left factorial. Filomat 1999, 13, 31–40. [Google Scholar]
- Petojević, A. The function vMm(s;a,z) and some well-known sequences. J. Integer Seq. 2002, 5, 1–16. [Google Scholar]
- Petojević, A. The functions. Rocky Mt. J. Math. 2006, 36, 1635–1650. [Google Scholar]
- Fabiano, N.; Mirkov, N.; Mitrović, Z.D.; Radenović, S. On some new observations on Kurepa’s left factorial. Math. Anal. Its Contemp. Appl. 2022, 4, 1–8. [Google Scholar]
- Fabiano, N.; Gardašević-Filipović, M.; Mirkov, N.; Todorčević, V.; Radenović, S. On the Distribution of Kurepa’s Function. Axioms 2022, 11, 388. [Google Scholar] [CrossRef]
- Gallardo, L.H. Bell numbers and Kurepa’s conjecture. Ann. Univ. Mariae Curie—Sklodowska Sec. A Math. 2022, LXXVI, 17–22. [Google Scholar] [CrossRef]
- Mijajlović, Ž. Fifty Years of Kurepa’s !n Hypothesis, Bulletin T.CLIV de l’Académie Serbe des Sciences et des Arts—2021, Classe des Sciences Mathématiques et Naturelles, Sciences Mathématiques, 46. Available online: http://elib.mi.sanu.ac.rs/files/journals/bltn/46/bltnn46p169-181.pdf (accessed on 6 June 2022).
- Barsky, D.; Benzaghou, B. Nombres de Bell et somme de factorielles. J. Théorie Nombres Bordx. 2004, 16, 1–17, Erratum in J. Théorie Nombres Bordx. 2011, 23, 527. [Google Scholar] [CrossRef]
- Riordan, J. An Introduction to Combinatorial Analysis; Wiley: Hoboken, NJ, USA, 1958. [Google Scholar]
- Comtet, L. Advanced Combinatorics; Reidel: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Peron, O. Die Lehren von den Kettenbüchen; Chelsea Publising Company: New York, NY, USA, 1954. [Google Scholar]
- Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/ (accessed on 14 April 2023).
- Yeung, D.W.K. Recursive sequences identifying the number of embedded coalitions. Int. Game Theory Rev. 2008, 10, 129–136. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2001. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petojević, A.; Gordić, S.; Mandić, M.; Ranitović, M.G. New Equivalents of Kurepa’s Hypothesis for Left Factorial. Axioms 2023, 12, 785. https://doi.org/10.3390/axioms12080785
Petojević A, Gordić S, Mandić M, Ranitović MG. New Equivalents of Kurepa’s Hypothesis for Left Factorial. Axioms. 2023; 12(8):785. https://doi.org/10.3390/axioms12080785
Chicago/Turabian StylePetojević, Aleksandar, Snežana Gordić, Milinko Mandić, and Marijana Gorjanac Ranitović. 2023. "New Equivalents of Kurepa’s Hypothesis for Left Factorial" Axioms 12, no. 8: 785. https://doi.org/10.3390/axioms12080785
APA StylePetojević, A., Gordić, S., Mandić, M., & Ranitović, M. G. (2023). New Equivalents of Kurepa’s Hypothesis for Left Factorial. Axioms, 12(8), 785. https://doi.org/10.3390/axioms12080785