Thrombin Generation Thresholds for Coagulation Initiation under Flow
Abstract
:1. Introduction
2. Determining Thrombin Generation Thresholds under Flow
2.1. Mathemtical Modeling of Clot Formation under Flow
2.1.1. Spatio-Temporal Distribution of Clotting Factors
2.1.2. Blood Plasma and Its Interplay with the Clot
2.2. The Artificial Neural Network for the Fast Prediction of the Coagulation Response
3. Results
3.1. Model Calibration and Validation
3.2. The Threshold of Coagulation Initiation under Flow in Hyper-Coagulable and Normal States
3.3. The Threshold of ETP, Peak Concentration, and Time to Peak That Induces Clot Formation under Varying Flow Conditions
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Derivation of the Thrombin Generation Model
Appendix A.2. Performance Evaluation of Deep Learning Models
References
- Shen, F.; Kastrup, C.J.; Liu, Y.; Ismagilov, R.F. Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 2035–2041. [Google Scholar] [CrossRef] [PubMed]
- Kastrup, C.J.; Shen, F.; Runyon, M.K.; Ismagilov, R.F. Characterization of the threshold response of initiation of blood clotting to stimulus patch size. Biophys. J. 2007, 93, 2969–2977. [Google Scholar] [CrossRef] [PubMed]
- Belyaev, A.V.; Panteleev, M.A.; Ataullakhanov, F.I. Threshold of microvascular occlusion: Injury size defines the thrombosis scenario. Biophys. J. 2015, 109, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Louw, V.J.; Ntusi, N.A. Virchow’s triad revisited. S. Afr. Med. J. 2019, 109, 822–823. [Google Scholar] [CrossRef]
- Castoldi, E.; Rosing, J. Thrombin generation tests. Thromb. Res. 2011, 127, S21–S25. [Google Scholar] [CrossRef] [PubMed]
- Ataullakhanov, F.; Guria, G.; Sarbash, V.; Volkova, R. Spatiotemporal dynamics of clotting and pattern formation in human blood. Biochim. Biophys. Acta Gen. Subj. 1998, 1425, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Brummel-Ziedins, K.E.; Orfeo, T.; Gissel, M.; Mann, K.G.; Rosendaal, F.R. Factor Xa generation by computational modeling: An additional discriminator to thrombin generation evaluation. PLoS ONE 2012, 7, e29178. [Google Scholar] [CrossRef]
- Chatterjee, M.S.; Denney, W.S.; Jing, H.; Diamond, S.L. Systems biology of coagulation initiation: Kinetics of thrombin generation in resting and activated human blood. PLoS Comput. Biol. 2010, 6, e1000950. [Google Scholar] [CrossRef]
- Jones, K.C.; Mann, K.G. A model for the tissue factor pathway to thrombin. II. A mathematical simulation. J. Biol. Chem. 1994, 269, 23367–23373. [Google Scholar] [CrossRef]
- Anand, M.; Rajagopal, K.; Rajagopal, K. A model for the formation and lysis of blood clots. Pathophysiol. Haemost. Thromb. 2006, 34, 109–120. [Google Scholar] [CrossRef]
- Heeb, M.J.; Mesters, R.; Tans, G.; Rosing, J.; Griffin, J. Binding of protein S to factor Va associated with inhibition of prothrombinase that is independent of activated protein C. J. Biol. Chem. 1993, 268, 2872–2877. [Google Scholar] [CrossRef] [PubMed]
- Hemker, H.; Kerdelo, S.; Kremers, R. Is there value in kinetic modeling of thrombin generation? No (unless…). J. Thromb. Haemost. 2012, 10, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Bouchnita, A.; Terekhov, K.; Nony, P.; Vassilevski, Y.; Volpert, V. A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PLoS ONE 2020, 15, e0235392. [Google Scholar] [CrossRef] [PubMed]
- Bouchnita, A.; Galochkina, T.; Kurbatova, P.; Nony, P.; Volpert, V. Conditions of microvessel occlusion for blood coagulation in flow. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e2850. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yazdani, A.; Li, H.; Humphrey, J.D.; Karniadakis, G.E. A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Comput. Biol. 2020, 16, e1007709. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, V.; Rakesh, V.; Reifman, J.; Mitrophanov, A.Y. Computational study of thrombus formation and clotting factor effects under venous flow conditions. Biophys. J. 2016, 110, 1869–1885. [Google Scholar] [CrossRef] [PubMed]
- Leiderman, K.; Fogelson, A.L. Grow with the flow: A spatial–temporal model of platelet deposition and blood coagulation under flow. Math. Med. Biol. J. IMA 2011, 28, 47–84. [Google Scholar] [CrossRef] [PubMed]
- Bodnár, T.; Sequeira, A. Numerical simulation of the coagulation dynamics of blood. Comput. Math. Methods Med. 2008, 9, 83–104. [Google Scholar] [CrossRef]
- Wu, W.T.; Jamiolkowski, M.A.; Wagner, W.R.; Aubry, N.; Massoudi, M.; Antaki, J.F. Multi-constituent simulation of thrombus deposition. Sci. Rep. 2017, 7, 42720. [Google Scholar] [CrossRef]
- Bouchnita, A.; Belyaev, A.V.; Volpert, V. Multiphase continuum modeling of thrombosis in aneurysms and recirculation zones. Phys. Fluids 2021, 33, 093314. [Google Scholar] [CrossRef]
- Xu, S.; Xu, Z.; Kim, O.V.; Litvinov, R.I.; Weisel, J.W.; Alber, M. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. J. R. Soc. Interface 2017, 14, 20170441. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, A.; Deng, Y.; Li, H.; Javadi, E.; Li, Z.; Jamali, S.; Lin, C.; Humphrey, J.D.; Mantzoros, C.S.; Em Karniadakis, G. Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J. R. Soc. Interface 2021, 18, 20200834. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, A.; Li, H.; Humphrey, J.D.; Karniadakis, G.E. A general shear-dependent model for thrombus formation. PLoS Comput. Biol. 2017, 13, e1005291. [Google Scholar] [CrossRef] [PubMed]
- Tosenberger, A.; Ataullakhanov, F.; Bessonov, N.; Panteleev, M.; Tokarev, A.; Volpert, V. Modelling of thrombus growth in flow with a DPD-PDE method. J. Theor. Biol. 2013, 337, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Fogelson, A.L.; Guy, R.D. Immersed-boundary-type models of intravascular platelet aggregation. Comput. Methods Appl. Mech. Eng. 2008, 197, 2087–2104. [Google Scholar] [CrossRef]
- Bouchnita, A.; Volpert, V. A multiscale model of platelet-fibrin thrombus growth in the flow. Comput. Fluids 2019, 184, 10–20. [Google Scholar] [CrossRef]
- Tsyu, N.G.; Belyaev, A.V. Coarse-grained simulations of von Willebrand factor adsorption to collagen with consequent platelet recruitment. Int. J. Numer. Methods Biomed. Eng. 2023, e3747. [Google Scholar] [CrossRef]
- Shankar, K.N.; Zhang, Y.; Sinno, T.; Diamond, S.L. A three-dimensional multiscale model for the prediction of thrombus growth under flow with single-platelet resolution. PLoS Comput. Biol. 2022, 18, e1009850. [Google Scholar] [CrossRef]
- Yoon, J.G.; Heo, J.; Kim, M.; Park, Y.J.; Choi, M.H.; Song, J.; Wyi, K.; Kim, H.; Duchenne, O.; Eom, S.; et al. Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems. PLoS ONE 2018, 13, e0195861. [Google Scholar] [CrossRef]
- Fang, K.; Dong, Z.; Chen, X.; Zhu, J.; Zhang, B.; You, J.; Xiao, Y.; Xia, W. Using machine learning to identify clotted specimens in coagulation testing. Clin. Chem. Lab. Med. 2021, 59, 1289–1297. [Google Scholar] [CrossRef]
- Bouchnita, A.; Nony, P.; Llored, J.P.; Volpert, V. Combining mathematical modeling and deep learning to make rapid and explainable predictions of the patient-specific response to anticoagulant therapy under venous flow. Math. Biosci. 2022, 349, 108830. [Google Scholar] [CrossRef] [PubMed]
- Bouchnita, A.; Mozokhina, A.; Nony, P.; Llored, J.P.; Volpert, V. Combining Computational Modelling and Machine Learning to Identify COVID-19 Patients with a High Thromboembolism Risk. Mathematics 2023, 11, 289. [Google Scholar] [CrossRef]
- Brummel-Ziedins, K. Models for thrombin generation and risk of disease. J. Thromb. Haemost. 2013, 11, 212–223. [Google Scholar] [PubMed]
- Danforth, C.M.; Orfeo, T.; Everse, S.J.; Mann, K.G.; Brummel-Ziedins, K.E. Defining the boundaries of normal thrombin generation: Investigations into hemostasis. PLoS ONE 2012, 7, e30385. [Google Scholar] [CrossRef] [PubMed]
- Wufsus, A.R.; Macera, N.; Neeves, K. The hydraulic permeability of blood clots as a function of fibrin and platelet density. Biophys. J. 2013, 104, 1812–1823. [Google Scholar] [CrossRef] [PubMed]
- Ratto, N.; Tokarev, A.; Chelle, P.; Tardy-Poncet, B.; Volpert, V. Clustering of thrombin generation test data using a reduced mathematical model of blood coagulation. Acta Biotheor. 2020, 68, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Ratto, N.; Bouchnita, A.; Chelle, P.; Marion, M.; Panteleev, M.; Nechipurenko, D.; Tardy-Poncet, B.; Volpert, V. Patient-specific modelling of blood coagulation. Bull. Math. Biol. 2021, 83, 50. [Google Scholar] [CrossRef] [PubMed]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the OSDI, Savannah, GA, USA, 2–4 November 2016; Volume 16, pp. 265–283. [Google Scholar]
- Binder, N.B.; Depasse, F.; Mueller, J.; Wissel, T.; Schwers, S.; Germer, M.; Hermes, B.; Turecek, P.L. Clinical use of thrombin generation assays. J. Thromb. Haemost. 2021, 19, 2918–2929. [Google Scholar] [CrossRef]
- Zavyalova, E.; Kopylov, A. Exploring potential anticoagulant drug formulations using thrombin generation test. Biochem. Biophys. Rep. 2016, 5, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A. Thrombin generation: A global coagulation procedure to investigate hypo-and hyper-coagulability. Haematologica 2020, 105, 2196. [Google Scholar] [CrossRef] [PubMed]
- Bouchnita, A.; Bouzaachane, K.; Galochkina, T.; Kurbatova, P.; Nony, P.; Volpert, V. An individualized blood coagulation model to predict INR therapeutic range during warfarin treatment. Math. Model. Nat. Phenom. 2016, 11, 28–44. [Google Scholar] [CrossRef]
- Montalvo, S.; Gomez, M.; Lozano, A.; Arias, S.; Rodriguez, L.; Morales-Acuna, F.; Gurovich, A.N. Differences in blood flow patterns and endothelial shear stress at the carotid artery using different exercise modalities and intensities. Front. Physiol. 2022, 13, 922. [Google Scholar] [CrossRef] [PubMed]
- Gurovich, A.N.; Rodriguez, L.; Morales-Acuna, F. There are no differences in brachial artery endothelial shear stress and blood flow patterns between males and females during exercise. Clin. Physiol. Funct. Imaging 2021, 41, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Krasotkina, Y.V.; Sinauridze, E.I.; Ataullakhanov, F.I. Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion. Biochim. Biophys. Acta Gen. Subj. 2000, 1474, 337–345. [Google Scholar] [CrossRef]
- Galochkina, T.; Bouchnita, A.; Kurbatova, P.; Volpert, V. Reaction-diffusion waves of blood coagulation. Math. Biosci. 2017, 288, 130–139. [Google Scholar] [CrossRef]
- Sain, S.R. The nature of statistical learning theory. Technometrics 1996, 38, 409. [Google Scholar] [CrossRef]
- Song, Y.Y.; Ying, L. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef]
Parameter | Mean | Standard Deviation |
---|---|---|
1.109932 | 6.382294 | |
2.448583 | 1.420816 | |
0.000479 | 0.000028 | |
0.000019 | 0.000001 | |
3.764441 | 2.170468 | |
1.285508 | 7.473447 | |
4.064636 | 2.327669 | |
0.020216 | 0.001173 | |
135.062467 | 14.774695 | |
1401.066678 | 160.943197 | |
135.062467 | 14.774695 | |
1401.066678 | 160.943197 |
Parameter | Mean | Standard Deviation |
---|---|---|
lag time (min) | 2.44537 | 0.3893 |
ETP (nM.min) | 779.68770 | 169.85197 |
peak concentration (nM) | 47.18947 | 12.6126 |
time to peak (nM) | 26.19182 | 6.3149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchnita, A.; Yadav, K.; Llored, J.-P.; Gurovich, A.; Volpert, V. Thrombin Generation Thresholds for Coagulation Initiation under Flow. Axioms 2023, 12, 873. https://doi.org/10.3390/axioms12090873
Bouchnita A, Yadav K, Llored J-P, Gurovich A, Volpert V. Thrombin Generation Thresholds for Coagulation Initiation under Flow. Axioms. 2023; 12(9):873. https://doi.org/10.3390/axioms12090873
Chicago/Turabian StyleBouchnita, Anass, Kanishk Yadav, Jean-Pierre Llored, Alvaro Gurovich, and Vitaly Volpert. 2023. "Thrombin Generation Thresholds for Coagulation Initiation under Flow" Axioms 12, no. 9: 873. https://doi.org/10.3390/axioms12090873
APA StyleBouchnita, A., Yadav, K., Llored, J. -P., Gurovich, A., & Volpert, V. (2023). Thrombin Generation Thresholds for Coagulation Initiation under Flow. Axioms, 12(9), 873. https://doi.org/10.3390/axioms12090873