Utilizing Empirical Bayes Estimation to Assess Reliability in Inverted Exponentiated Rayleigh Distribution with Progressive Hybrid Censored Medical Data
Abstract
:1. Introduction
- Case 1: , if .
- Case 2: , if .
2. Maximum Likelihood Estimation
3. Bayes Estimation
4. Empirical Bayes Estimation
5. Application of IER Distribution to Real Data
6. Simulation
- For a given value of the prior parameter, , generate the shape parameter from (12).
- Choose the values of , and three different CSs, , presented in Table 1.
- The MLE of the prior parameter a is calculated and then the empirical Bayes estimates based on BSE and BLINEX (with and ) loss functions of the , , and (at time ) are calculated as shown in Section 4.
- Steps 3 to 5 are repeated = 10,000 times and the average of estimates , mean squared error , and relative absolute bias are calculated where is an estimate of (= , , and (at )).
- The computational results of the ML, Bayes, and empirical Bayes estimates are presented in Table A1 and Table A2; see Appendix B.
Discussion
- The MSEs and RABs of the three methods of estimation decrease by increasing m for fixed T and n.
- The MSEs and RABs of the three methods of estimation decrease by increasing n for fixed T and m.
- The MSEs and RABs of the three methods of estimation decrease by increasing T for fixed n and m.
- The Bayes estimates of , , and (at time ) are better than the ML and empirical Bayes estimates by means of the MSEs and RABs.
- The empirical Bayes estimates of , , and (at time ) are better than the MLEs by means of the MSEs and RABs.
- The Bayes (empirical Bayes) estimates based on BLINEX (with ) loss function of , , and (at time ) are better than the Bayes (empirical Bayes) estimates based on BSE loss function by means of the MSEs and RABs.
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Bayes Estimate | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BLINEX | |||||||||||||||
MLE | BSE | ||||||||||||||
MSE | MSE | MSE | MSE | MSE | MSE | MSE | MSE | MSE | MSE | MSE | MSE | ||||
CS | RAB | RAB | RAB | RAB | RAB | RAB | RAB | RAB | RAB | RAB | RAB | RAB | |||
50 | 25 | 1.5 | I | 1.977050 | 0.429075 | 1.871590 | 1.976570 | 0.433322 | 1.871140 | 1.994750 | 0.433887 | 1.887400 | 1.805450 | 0.427747 | 1.718180 |
0.152675 | 0.005345 | 0.136822 | 0.143822 | 0.005071 | 0.128888 | 0.147255 | 0.005089 | 0.131779 | 0.143169 | 0.004918 | 0.126959 | ||||
0.158370 | 0.139925 | 0.158370 | 0.153716 | 0.135749 | 0.153716 | 0.155389 | 0.135938 | 0.155290 | 0.153725 | 0.134238 | 0.152880 | ||||
II | 2.053630 | 0.414787 | 1.944080 | 2.050720 | 0.418692 | 1.941330 | 2.066000 | 0.419134 | 1.955010 | 1.903300 | 0.414335 | 1.809640 | |||
0.151215 | 0.004597 | 0.135513 | 0.143380 | 0.004280 | 0.128491 | 0.149333 | 0.004277 | 0.133523 | 0.110752 | 0.004321 | 0.099826 | ||||
0.156124 | 0.132388 | 0.156124 | 0.152255 | 0.127740 | 0.152255 | 0.154842 | 0.127697 | 0.154697 | 0.137237 | 0.128351 | 0.137559 | ||||
III | 2.025980 | 0.419955 | 1.917910 | 2.023880 | 0.423842 | 1.915920 | 2.039530 | 0.424308 | 1.929930 | 1.873620 | 0.419251 | 1.781670 | |||
0.152622 | 0.004831 | 0.136774 | 0.144647 | 0.004539 | 0.129627 | 0.149686 | 0.004542 | 0.133884 | 0.121450 | 0.004521 | 0.108915 | ||||
0.157028 | 0.134920 | 0.157028 | 0.153041 | 0.130625 | 0.153041 | 0.155232 | 0.130661 | 0.155107 | 0.143021 | 0.130511 | 0.143011 | ||||
3.0 | I | 2.004100 | 0.423050 | 1.897200 | 2.002700 | 0.426715 | 1.895870 | 2.017500 | 0.427165 | 1.909130 | 1.860620 | 0.422271 | 1.768910 | ||
0.128141 | 0.004183 | 0.114835 | 0.121832 | 0.003959 | 0.109182 | 0.125548 | 0.003964 | 0.112319 | 0.108912 | 0.003923 | 0.097280 | ||||
0.143928 | 0.124885 | 0.143928 | 0.140460 | 0.121305 | 0.140460 | 0.142201 | 0.121366 | 0.142101 | 0.135117 | 0.120924 | 0.134821 | ||||
II | 2.055290 | 0.414485 | 1.945660 | 2.052350 | 0.418400 | 1.942870 | 2.067640 | 0.418842 | 1.956570 | 1.904690 | 0.414042 | 1.810970 | |||
0.151250 | 0.004599 | 0.135545 | 0.143408 | 0.004279 | 0.128517 | 0.149410 | 0.004276 | 0.133590 | 0.110381 | 0.004323 | 0.099510 | ||||
0.155656 | 0.131949 | 0.155656 | 0.151795 | 0.127270 | 0.151795 | 0.154406 | 0.127222 | 0.154259 | 0.136486 | 0.127934 | 0.136826 | ||||
III | 2.038000 | 0.417241 | 1.929290 | 2.035580 | 0.421056 | 1.927000 | 2.050610 | 0.421498 | 1.940460 | 1.890710 | 0.416697 | 1.797580 | |||
0.140065 | 0.004334 | 0.125521 | 0.132927 | 0.004053 | 0.119124 | 0.138094 | 0.004053 | 0.123490 | 0.107059 | 0.004073 | 0.096216 | ||||
0.149735 | 0.127824 | 0.149735 | 0.146074 | 0.123535 | 0.146074 | 0.148425 | 0.123518 | 0.148292 | 0.134168 | 0.123925 | 0.134239 | ||||
40 | 1.5 | I | 2.000340 | 0.423111 | 1.893640 | 1.999790 | 0.425992 | 1.893110 | 2.011500 | 0.426359 | 1.903610 | 1.886360 | 0.422357 | 1.791760 | |
0.111063 | 0.003724 | 0.099530 | 0.106826 | 0.003582 | 0.095733 | 0.108861 | 0.003588 | 0.097451 | 0.100772 | 0.003531 | 0.090041 | ||||
0.134640 | 0.117433 | 0.134640 | 0.132068 | 0.114918 | 0.132068 | 0.133161 | 0.114993 | 0.133098 | 0.129239 | 0.114357 | 0.129013 | ||||
II | 2.007770 | 0.421330 | 1.900680 | 2.007150 | 0.423735 | 1.900090 | 2.016770 | 0.424036 | 1.908700 | 1.913330 | 0.420757 | 1.816240 | |||
0.100979 | 0.003310 | 0.090494 | 0.097717 | 0.003194 | 0.087571 | 0.099502 | 0.003197 | 0.089079 | 0.089680 | 0.003168 | 0.080385 | ||||
0.127933 | 0.110975 | 0.127933 | 0.125903 | 0.108915 | 0.125903 | 0.126838 | 0.108962 | 0.126786 | 0.122031 | 0.108589 | 0.121994 | ||||
III | 1.997610 | 0.423665 | 1.891050 | 1.997080 | 0.426512 | 1.890550 | 2.008680 | 0.426876 | 1.900940 | 1.884800 | 0.422910 | 1.790210 | |||
0.112349 | 0.003783 | 0.100683 | 0.108106 | 0.003641 | 0.096880 | 0.110106 | 0.003648 | 0.098569 | 0.102132 | 0.003588 | 0.091266 | ||||
0.135467 | 0.118320 | 0.135467 | 0.132905 | 0.115873 | 0.132905 | 0.133933 | 0.115955 | 0.133874 | 0.130031 | 0.115234 | 0.129841 | ||||
3.0 | I | 2.007740 | 0.420786 | 1.900650 | 2.007050 | 0.423150 | 1.899990 | 2.016360 | 0.423440 | 1.908330 | 1.91607 | 0.420275 | 1.818680 | ||
0.087140 | 0.002837 | 0.078091 | 0.084424 | 0.002733 | 0.075658 | 0.086130 | 0.002735 | 0.077099 | 0.07683 | 0.002723 | 0.068861 | ||||
0.118321 | 0.102508 | 0.118321 | 0.116513 | 0.100575 | 0.116513 | 0.117455 | 0.100604 | 0.117401 | 0.11273 | 0.100422 | 0.112671 | ||||
II | 2.026000 | 0.417566 | 1.917930 | 2.024970 | 0.419959 | 1.916960 | 2.034260 | 0.420243 | 1.925270 | 1.934050 | 0.417145 | 1.835700 | |||
0.090797 | 0.002865 | 0.081368 | 0.087935 | 0.002744 | 0.078804 | 0.090087 | 0.002743 | 0.080624 | 0.075998 | 0.002755 | 0.068332 | ||||
0.120531 | 0.103441 | 0.120531 | 0.118691 | 0.101279 | 0.118691 | 0.119834 | 0.101279 | 0.119770 | 0.112821 | 0.101414 | 0.112894 | ||||
III | 2.013390 | 0.419833 | 1.905990 | 2.012600 | 0.422217 | 1.905240 | 2.021960 | 0.422507 | 1.913620 | 1.921140 | 0.419344 | 1.823510 | |||
0.089442 | 0.002880 | 0.080155 | 0.086625 | 0.002769 | 0.077630 | 0.088483 | 0.002771 | 0.079201 | 0.077621 | 0.002764 | 0.069637 | ||||
0.119775 | 0.103457 | 0.119775 | 0.117935 | 0.101397 | 0.117935 | 0.118965 | 0.101412 | 0.118907 | 0.113161 | 0.101369 | 0.113146 | ||||
100 | 50 | 1.5 | I | 2.005890 | 0.421389 | 1.898890 | 2.005420 | 0.423743 | 1.898450 | 2.014830 | 0.424039 | 1.906880 | 1.913570 | 0.420802 | 1.816360 |
0.093472 | 0.003087 | 0.083766 | 0.090583 | 0.002987 | 0.081177 | 0.092077 | 0.002991 | 0.082439 | 0.084919 | 0.002958 | 0.076017 | ||||
0.122868 | 0.106780 | 0.122868 | 0.120976 | 0.104866 | 0.120976 | 0.121850 | 0.104913 | 0.121799 | 0.118039 | 0.104535 | 0.117925 | ||||
II | 2.040250 | 0.414756 | 1.931420 | 2.039280 | 0.416727 | 1.930500 | 2.046830 | 0.416957 | 1.937260 | 1.964950 | 0.414450 | 1.864060 | |||
0.086360 | 0.002627 | 0.077393 | 0.084086 | 0.002525 | 0.075355 | 0.085972 | 0.002523 | 0.076951 | 0.071526 | 0.002546 | 0.064485 | ||||
0.115452 | 0.098160 | 0.115452 | 0.114006 | 0.096388 | 0.114006 | 0.114966 | 0.096376 | 0.114913 | 0.108126 | 0.096608 | 0.108308 | ||||
III | 2.025150 | 0.417510 | 1.917130 | 2.024410 | 0.419527 | 1.916420 | 2.032240 | 0.419770 | 1.923440 | 1.947390 | 0.417122 | 1.847580 | |||
0.085481 | 0.002689 | 0.076605 | 0.083199 | 0.002595 | 0.074560 | 0.084821 | 0.002595 | 0.075932 | 0.073654 | 0.002599 | 0.066225 | ||||
0.115726 | 0.099310 | 0.115726 | 0.114230 | 0.097581 | 0.114230 | 0.115121 | 0.097586 | 0.115070 | 0.109475 | 0.097638 | 0.109552 | ||||
3.0 | I | 2.008910 | 0.420059 | 1.901750 | 2.008400 | 0.421970 | 1.901270 | 2.015870 | 0.422204 | 1.907960 | 1.935070 | 0.419643 | 1.835710 | ||
0.074111 | 0.002395 | 0.066415 | 0.072244 | 0.002322 | 0.064742 | 0.073451 | 0.002323 | 0.065763 | 0.066236 | 0.002317 | 0.059421 | ||||
0.108838 | 0.094142 | 0.108838 | 0.107497 | 0.092722 | 0.107497 | 0.108193 | 0.092746 | 0.108154 | 0.104660 | 0.092590 | 0.104632 | ||||
II | 2.036370 | 0.415353 | 1.927740 | 2.035460 | 0.417313 | 1.926880 | 2.042970 | 0.417542 | 1.933610 | 1.961470 | 0.415036 | 1.860750 | |||
0.083229 | 0.002552 | 0.074587 | 0.081056 | 0.002455 | 0.072639 | 0.082836 | 0.002454 | 0.074145 | 0.069497 | 0.002473 | 0.062619 | ||||
0.113293 | 0.096552 | 0.113293 | 0.111882 | 0.094808 | 0.111882 | 0.112836 | 0.094794 | 0.112783 | 0.106206 | 0.095033 | 0.106354 | ||||
III | 2.029630 | 0.416493 | 1.921360 | 2.028820 | 0.418433 | 1.920600 | 2.036280 | 0.418662 | 1.927280 | 1.95534 | 0.416155 | 1.854910 | |||
0.080508 | 0.002506 | 0.072149 | 0.078438 | 0.002415 | 0.070293 | 0.080072 | 0.002414 | 0.071676 | 0.06825 | 0.002428 | 0.061435 | ||||
0.112363 | 0.096154 | 0.112363 | 0.110976 | 0.094466 | 0.110976 | 0.111886 | 0.094457 | 0.111835 | 0.10561 | 0.094640 | 0.105746 | ||||
80 | 1.5 | I | 2.008290 | 0.419757 | 1.901170 | 2.008040 | 0.421271 | 1.900930 | 2.013970 | 0.421460 | 1.906240 | 1.949640 | 0.419389 | 1.848700 | |
0.063250 | 0.002067 | 0.056682 | 0.062005 | 0.002021 | 0.055567 | 0.062702 | 0.002023 | 0.056156 | 0.058751 | 0.002012 | 0.052666 | ||||
0.100523 | 0.087109 | 0.100523 | 0.099541 | 0.086130 | 0.099541 | 0.099975 | 0.086157 | 0.099951 | 0.098002 | 0.085934 | 0.097958 | ||||
II | 2.014560 | 0.418259 | 1.907100 | 2.014310 | 0.419501 | 1.906860 | 2.019120 | 0.419654 | 1.911170 | 1.966790 | 0.417977 | 1.864350 | |||
0.054446 | 0.001752 | 0.048793 | 0.053558 | 0.001716 | 0.047997 | 0.054141 | 0.001717 | 0.048490 | 0.050204 | 0.001715 | 0.045060 | ||||
0.092964 | 0.080253 | 0.092964 | 0.092222 | 0.079429 | 0.092222 | 0.092619 | 0.079438 | 0.092596 | 0.090293 | 0.079390 | 0.090311 | ||||
III | 2.011240 | 0.419161 | 1.903950 | 2.010960 | 0.420669 | 1.903700 | 2.016840 | 0.420857 | 1.908960 | 1.952970 | 0.418806 | 1.851830 | |||
0.061850 | 0.002012 | 0.055428 | 0.060640 | 0.001966 | 0.054343 | 0.061359 | 0.001967 | 0.054952 | 0.057118 | 0.001959 | 0.051217 | ||||
0.099054 | 0.085737 | 0.099054 | 0.098094 | 0.084719 | 0.098094 | 0.098567 | 0.084737 | 0.098540 | 0.096190 | 0.084603 | 0.096170 | ||||
3.0 | I | 2.016080 | 0.417773 | 1.908540 | 2.015790 | 0.418997 | 1.908260 | 2.020480 | 0.419146 | 1.912470 | 1.969350 | 0.417515 | 1.866720 | ||
0.049171 | 0.001576 | 0.044065 | 0.048389 | 0.001540 | 0.043364 | 0.048989 | 0.001540 | 0.043872 | 0.044788 | 0.001544 | 0.040222 | ||||
0.088458 | 0.076284 | 0.088458 | 0.087770 | 0.075457 | 0.087770 | 0.088198 | 0.075457 | 0.088174 | 0.085473 | 0.075504 | 0.085513 | ||||
II | 2.021400 | 0.416910 | 1.913580 | 2.021050 | 0.418120 | 1.913250 | 2.025670 | 0.418266 | 1.917380 | 1.975300 | 0.416672 | 1.872320 | |||
0.052228 | 0.001645 | 0.046804 | 0.051396 | 0.001606 | 0.046059 | 0.052083 | 0.001605 | 0.046640 | 0.046877 | 0.001613 | 0.042142 | ||||
0.089795 | 0.077108 | 0.089795 | 0.089104 | 0.076259 | 0.089104 | 0.089552 | 0.076256 | 0.089527 | 0.086606 | 0.076340 | 0.086652 | ||||
III | 2.012830 | 0.418386 | 1.905460 | 2.012560 | 0.419603 | 1.905200 | 2.017240 | 0.419751 | 1.909400 | 1.966270 | 0.418122 | 1.863800 | |||
0.049647 | 0.001594 | 0.044492 | 0.048858 | 0.001559 | 0.043785 | 0.049433 | 0.001559 | 0.044271 | 0.045489 | 0.001561 | 0.040839 | ||||
0.088777 | 0.076631 | 0.088777 | 0.088088 | 0.075839 | 0.088088 | 0.088484 | 0.075844 | 0.088462 | 0.086083 | 0.075840 | 0.086101 |
Empirical Bayes Estimate | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BLINEX | ||||||||||||
BSE | ||||||||||||
MSE | MSE | MSE | MSE | MSE | MSE | MSE | MSE | MSE | ||||
CS | RAB | RAB | RAB | RAB | RAB | RAB | RAB | RAB | RAB | |||
50 | 25 | 1.5 | I | 1.945050 | 0.420809 | 1.841300 | 1.932720 | 0.349998 | 1.824340 | 1.834250 | 0.432910 | 1.745690 |
0.148182 | 0.005897 | 0.132795 | 0.151826 | 0.021981 | 0.136390 | 0.144394 | 0.004954 | 0.128605 | ||||
0.155780 | 0.144480 | 0.155780 | 0.160234 | 0.291955 | 0.160752 | 0.153521 | 0.136140 | 0.153096 | ||||
II | 2.049740 | 0.413219 | 1.940410 | 2.053720 | 0.390717 | 1.941960 | 1.920290 | 0.414891 | 1.825760 | |||
0.162071 | 0.004511 | 0.145242 | 0.169236 | 0.006833 | 0.151926 | 0.114708 | 0.004641 | 0.103605 | ||||
0.158790 | 0.130590 | 0.158790 | 0.162230 | 0.163743 | 0.162341 | 0.139314 | 0.132548 | 0.139770 | ||||
III | 2.013250 | 0.416318 | 1.905860 | 2.011740 | 0.379299 | 1.901320 | 1.893610 | 0.421276 | 1.800690 | |||
0.159461 | 0.004925 | 0.142903 | 0.165017 | 0.010804 | 0.148156 | 0.124839 | 0.004753 | 0.112253 | ||||
0.157956 | 0.135153 | 0.157956 | 0.161362 | 0.203428 | 0.161569 | 0.144523 | 0.133767 | 0.144703 | ||||
3.0 | I | 1.942470 | 0.407031 | 1.838860 | 1.900590 | 0.289687 | 1.791260 | 1.894680 | 0.432888 | 1.801660 | ||
0.136838 | 0.004068 | 0.122629 | 0.162728 | 0.029203 | 0.148680 | 0.106873 | 0.004487 | 0.095823 | ||||
0.149141 | 0.123577 | 0.149141 | 0.165343 | 0.348686 | 0.167277 | 0.133133 | 0.129918 | 0.133102 | ||||
II | 2.051190 | 0.412902 | 1.941780 | 2.055160 | 0.390135 | 1.943310 | 1.921800 | 0.414615 | 1.827200 | |||
0.161975 | 0.004535 | 0.145156 | 0.168870 | 0.007063 | 0.151576 | 0.114427 | 0.004633 | 0.103374 | ||||
0.158156 | 0.130330 | 0.158156 | 0.161499 | 0.165360 | 0.161603 | 0.138630 | 0.131975 | 0.139109 | ||||
III | 2.018860 | 0.411926 | 1.911170 | 2.011360 | 0.364995 | 1.900390 | 1.912060 | 0.419837 | 1.817940 | |||
0.148538 | 0.004245 | 0.133115 | 0.158030 | 0.010572 | 0.142238 | 0.109445 | 0.004396 | 0.098626 | ||||
0.151835 | 0.126563 | 0.151835 | 0.157404 | 0.205068 | 0.157834 | 0.135154 | 0.128330 | 0.135446 | ||||
40 | 1.5 | I | 1.948080 | 0.410970 | 1.844170 | 1.917920 | 0.317866 | 1.809340 | 1.912030 | 0.430903 | 1.816450 | |
0.106463 | 0.003999 | 0.095408 | 0.114252 | 0.020614 | 0.103203 | 0.101958 | 0.003594 | 0.091374 | ||||
0.132250 | 0.121824 | 0.132250 | 0.139596 | 0.299050 | 0.140504 | 0.129534 | 0.115952 | 0.129508 | ||||
II | 1.951440 | 0.408380 | 1.847350 | 1.916530 | 0.311434 | 1.807900 | 1.937010 | 0.430089 | 1.839100 | |||
0.099383 | 0.003474 | 0.089063 | 0.109623 | 0.019699 | 0.099375 | 0.090662 | 0.003305 | 0.081447 | ||||
0.127471 | 0.114151 | 0.127471 | 0.136625 | 0.296695 | 0.137800 | 0.122276 | 0.111448 | 0.122376 | ||||
III | 1.952030 | 0.413119 | 1.847910 | 1.926830 | 0.330837 | 1.818430 | 1.908340 | 0.430331 | 1.812850 | |||
0.108002 | 0.004059 | 0.096788 | 0.113875 | 0.018180 | 0.102637 | 0.103609 | 0.003629 | 0.092842 | ||||
0.133132 | 0.122187 | 0.133132 | 0.138902 | 0.277586 | 0.139568 | 0.130642 | 0.116646 | 0.130627 | ||||
3.0 | I | 1.921950 | 0.400770 | 1.819430 | 1.862270 | 0.255898 | 1.753630 | 1.946970 | 0.434895 | 1.848630 | ||
0.092571 | 0.002959 | 0.082958 | 0.119059 | 0.034949 | 0.109993 | 0.075773 | 0.003170 | 0.068102 | ||||
0.123789 | 0.106173 | 0.123789 | 0.143270 | 0.400192 | 0.145845 | 0.111513 | 0.109046 | 0.111600 | ||||
II | 1.961720 | 0.402672 | 1.857070 | 1.919750 | 0.293153 | 1.810190 | 1.959490 | 0.427888 | 1.860300 | |||
0.092356 | 0.002926 | 0.082766 | 0.107848 | 0.021643 | 0.098337 | 0.076462 | 0.003015 | 0.068911 | ||||
0.122769 | 0.105208 | 0.122769 | 0.135281 | 0.314475 | 0.136793 | 0.112563 | 0.106685 | 0.112746 | ||||
III | 1.936870 | 0.401986 | 1.833550 | 1.884670 | 0.272109 | 1.775740 | 1.949760 | 0.432315 | 1.851220 | |||
0.093625 | 0.002973 | 0.083903 | 0.115659 | 0.029572 | 0.106317 | 0.077106 | 0.003141 | 0.069353 | ||||
0.123707 | 0.106245 | 0.123707 | 0.140078 | 0.364342 | 0.142210 | 0.112363 | 0.108430 | 0.112510 | ||||
100 | 50 | 1.5 | I | 1.949950 | 0.408753 | 1.84594 | 1.916090 | 0.313411 | 1.807590 | 1.936600 | 0.430001 | 1.838590 |
0.089794 | 0.003310 | 0.08047 | 0.098121 | 0.019307 | 0.088864 | 0.085949 | 0.003028 | 0.077128 | ||||
0.120880 | 0.111438 | 0.12088 | 0.128682 | 0.292066 | 0.129686 | 0.118405 | 0.106057 | 0.118455 | ||||
II | 2.020040 | 0.410110 | 1.912290 | 2.009490 | 0.371991 | 1.899580 | 1.976530 | 0.417777 | 1.875190 | |||
0.089742 | 0.002564 | 0.080424 | 0.093812 | 0.005076 | 0.084386 | 0.072814 | 0.002682 | 0.065684 | ||||
0.116747 | 0.097045 | 0.116747 | 0.120207 | 0.149887 | 0.120534 | 0.108724 | 0.099020 | 0.108925 | ||||
III | 1.995590 | 0.410856 | 1.889140 | 1.979220 | 0.358340 | 1.870030 | 1.961540 | 0.421963 | 1.861210 | |||
0.086057 | 0.002713 | 0.077121 | 0.090261 | 0.007886 | 0.081230 | 0.074918 | 0.002691 | 0.067435 | ||||
0.115549 | 0.100044 | 0.115549 | 0.119522 | 0.184521 | 0.119941 | 0.110066 | 0.099321 | 0.110211 | ||||
3.0 | I | 1.920320 | 0.399955 | 1.817890 | 1.858790 | 0.254445 | 1.750400 | 1.963210 | 0.434703 | 1.863090 | ||
0.078849 | 0.002585 | 0.070662 | 0.103482 | 0.034019 | 0.095900 | 0.065675 | 0.002705 | 0.059056 | ||||
0.114500 | 0.099010 | 0.114500 | 0.134261 | 0.399018 | 0.136937 | 0.103654 | 0.100855 | 0.103738 | ||||
II | 2.015610 | 0.410621 | 1.908090 | 2.004810 | 0.371826 | 1.895100 | 1.973060 | 0.418446 | 1.871900 | |||
0.086057 | 0.002500 | 0.077121 | 0.089923 | 0.005104 | 0.080877 | 0.070700 | 0.002598 | 0.063743 | ||||
0.114315 | 0.095707 | 0.114315 | 0.117674 | 0.150510 | 0.117994 | 0.106749 | 0.097245 | 0.106935 | ||||
III | 1.994250 | 0.408469 | 1.887870 | 1.973090 | 0.347123 | 1.863710 | 1.970540 | 0.422008 | 1.869600 | |||
0.082005 | 0.002494 | 0.073490 | 0.088284 | 0.008996 | 0.079699 | 0.069194 | 0.002563 | 0.062350 | ||||
0.113145 | 0.096223 | 0.113145 | 0.118652 | 0.197952 | 0.119272 | 0.106020 | 0.097243 | 0.106203 | ||||
80 | 1.5 | I | 1.940600 | 0.405031 | 1.837080 | 1.896840 | 0.296741 | 1.788770 | 1.969970 | 0.430635 | 1.868500 | |
0.061065 | 0.002300 | 0.054724 | 0.071052 | 0.019984 | 0.064955 | 0.059369 | 0.002094 | 0.053326 | ||||
0.100366 | 0.092444 | 0.100366 | 0.110652 | 0.305950 | 0.112101 | 0.098091 | 0.088377 | 0.098141 | ||||
II | 1.944150 | 0.403079 | 1.840440 | 1.897840 | 0.292191 | 1.789620 | 1.985970 | 0.429717 | 1.883110 | |||
0.053441 | 0.001982 | 0.047892 | 0.064108 | 0.019849 | 0.058849 | 0.050778 | 0.001815 | 0.045659 | ||||
0.093563 | 0.086209 | 0.093563 | 0.105010 | 0.309314 | 0.106631 | 0.090462 | 0.082179 | 0.090554 | ||||
III | 1.951450 | 0.406182 | 1.847360 | 1.913440 | 0.310227 | 1.805240 | 1.971420 | 0.428703 | 1.869790 | |||
0.059517 | 0.002207 | 0.053337 | 0.067355 | 0.016471 | 0.061333 | 0.057786 | 0.002018 | 0.051912 | ||||
0.098184 | 0.090446 | 0.098184 | 0.106501 | 0.275523 | 0.107666 | 0.096425 | 0.086231 | 0.096483 | ||||
3.0 | I | 1.914540 | 0.395729 | 1.812420 | 1.844000 | 0.235823 | 1.735680 | 1.995160 | 0.434726 | 1.892020 | ||
0.053750 | 0.001983 | 0.048169 | 0.078187 | 0.037936 | 0.073462 | 0.044912 | 0.001863 | 0.040437 | ||||
0.094968 | 0.086851 | 0.094968 | 0.117158 | 0.437717 | 0.120360 | 0.085111 | 0.083738 | 0.085243 | ||||
II | 1.944870 | 0.400265 | 1.841130 | 1.893170 | 0.279579 | 1.784600 | 1.995650 | 0.429536 | 1.892230 | |||
0.053861 | 0.001850 | 0.048268 | 0.068330 | 0.022407 | 0.063117 | 0.047182 | 0.001803 | 0.042488 | ||||
0.093806 | 0.082546 | 0.093806 | 0.108367 | 0.334236 | 0.110379 | 0.086234 | 0.081991 | 0.086343 | ||||
III | 1.922590 | 0.398700 | 1.820040 | 1.860250 | 0.256237 | 1.752120 | 1.989640 | 0.433403 | 1.886700 | |||
0.053524 | 0.001883 | 0.047966 | 0.073927 | 0.030694 | 0.069028 | 0.045466 | 0.001843 | 0.040903 | ||||
0.094728 | 0.084164 | 0.094728 | 0.113737 | 0.389377 | 0.116441 | 0.085619 | 0.083385 | 0.085720 |
References
- Ghitany, M.E.; Tuan, V.K.; Balakrishnan, N. Likelihood estimation for a general class of inverse exponentiated distributions based on complete and progressively censored data. J. Stat. Comput. Simul. 2014, 84, 96–106. [Google Scholar] [CrossRef]
- Rastogi, M.K.; Tripathi, Y.M. Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring. J. Appl. Stat. 2014, 41, 2375–2405. [Google Scholar] [CrossRef]
- Kohansal, A. Large Estimation of the stress-strength reliability of progressively censored inverted exponentiated Rayleigh distributions. J. Appl. Math. Inform. 2017, 13, 49–76. [Google Scholar] [CrossRef]
- Kayal, T.; Tripathi, Y.M.; Rastogi, M.K. Estimation and prediction for an inverted exponentiated Rayleigh distribution under hybrid censoring. Commun. Stat.-Theory Methods 2018, 47, 1615–1640. [Google Scholar] [CrossRef]
- Maurya, R.K.; Tripathi, Y.M.; Rastogi, M.K. Estimation and prediction for a progressively first-failure censored inverted exponentiated Rayleigh distribution. J. Stat. Theory Pract. 2019, 13, 1–48. [Google Scholar] [CrossRef]
- Rao, G.S.; Mbwambo, S. Exponentiated inverse Rayleigh distribution and an application to coating weights of iron sheets data. J. Probab. Stat. 2019, 2019, 7519429. [Google Scholar] [CrossRef]
- Rao, G.S.; Mbwambo, S.; Josephat, P.K. Estimation of stress–strength reliability from exponentiated inverse Rayleigh distribution. Int. J. Reliab. Qual. Saf. Eng. 2019, 26, 1950005. [Google Scholar] [CrossRef]
- Gao, S.; Yu, J.; Gui, W. Pivotal inference for the inverted exponentiated Rayleigh distribution based on progressive type-II censored data. Am. J. Math. Manag. Sci. 2020, 39, 315–328. [Google Scholar] [CrossRef]
- Panahi, H.; Moradi, N. Estimation of the inverted exponentiated Rayleigh distribution based on adaptive Type II progressive hybrid censored sample. J. Comput. Appl. Math. 2020, 364, 112–345. [Google Scholar] [CrossRef]
- Fan, J.; Gui, W. Statistical inference of inverted exponentiated rayleigh distribution under joint progressively type-II censoring. Entropy 2022, 24, 171. [Google Scholar] [CrossRef]
- Anwar, S.; Lone, S.A.; Khan, A.; Almutlak, S. Stress-strength reliability estimation for the inverted exponentiated Rayleigh distribution under unified progressive hybrid censoring with application. Electron. Res. Arch. 2023, 31, 4011–4033. [Google Scholar] [CrossRef]
- Chalabi, L. High-resolution sea clutter modelling using compound inverted exponentiated Rayleigh distribution. Remote Sens. Lett. 2023, 14, 33–441. [Google Scholar] [CrossRef]
- Epstein, B. Truncated life tests in the exponential case. Ann. Math. Stat. 1954, 25, 555–564. [Google Scholar] [CrossRef]
- Kundu, D.; Joarder, A. Analysis of Type-II progressively hybrid censored data. Comput. Stat. Data Anal. 2006, 50, 2509–2528. [Google Scholar] [CrossRef]
- Lin, C.T.; Huang, Y.L.; Balakrishnan, N. Exact Bayesian variable sampling plans for the exponential distribution with progressive hybrid censoring. J. Stat. Comput. Simul. 2011, 81, 873–882. [Google Scholar] [CrossRef]
- Lin, C.T.; Huang, Y.L. On progressive hybrid censored exponential distribution. J. Stat. Comput. Simul. 2012, 82, 689–709. [Google Scholar] [CrossRef]
- Gürünlü Alma, Ö.; Arabi Belaghi, R. On the estimation of the extreme value and normal distribution parameters based on progressive type-II hybrid-censored data. J. Stat. Comput. Simul. 2016, 86, 569–596. [Google Scholar] [CrossRef]
- Kayal, T.; Tripathi, Y.M.; Rastogi, M.K.; Asgharzadeh, A. Inference for Burr XII distribution under Type I progressive hybrid censoring. Commun.-Stat.-Simul. Comput. 2017, 46, 7447–7465. [Google Scholar] [CrossRef]
- Asl, M.N.; Belaghi, R.A.; Bevrani, H. Classical and Bayesian inferential approaches using Lomax model under progressively type-I hybrid censoring. J. Comput. Appl. Math. 2018, 343, 397–412. [Google Scholar] [CrossRef]
- Basu, S.; Singh, S.K.; Singh, U. Bayesian inference using product of spacings function for Progressive hybrid Type-I censoring scheme. Statistics 2018, 52, 345–363. [Google Scholar] [CrossRef]
- Goyal, T.; Rai, P.K.; Maurya, S.K. Bayesian estimation for GDUS exponential distribution under type-I progressive hybrid censoring. Ann. Data Sci. 2020, 7, 307–345. [Google Scholar] [CrossRef]
- Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Wang, F.K.; Keats, J.B.; Zimmer, W.J. Maximum likelihood estimation of the Burr XII parameters with censored and uncensored data. Microelectron. Reliab. 1996, 36, 359–362. [Google Scholar] [CrossRef]
- Zimmer, W.J.; Keats, J.B.; Wang, F.K. The Burr XII distribution in reliability analysis. J. Qual. Technol. 1998, 30, 386–394. [Google Scholar] [CrossRef]
- Nassar, M.M.; Eissa, F.H. Bayesian estimation for the exponentiated Weibull model. Commun. Stat.-Theory Methods 2005, 33, 2343–2362. [Google Scholar] [CrossRef]
- Kim, C.; Jung, J.; Chung, Y. Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring. Stat. Pap. 2011, 52, 53–70. [Google Scholar] [CrossRef]
- Calabria, R.; Pulcini, G. Point estimation under asymmetric loss functions for left-truncated exponential samples. Commun. Stat.-Theory Methods 1996, 25, 585–600. [Google Scholar] [CrossRef]
- EL-Sagheer, R.M.; Eliwa, M.S.; Alqahtani, K.M.; EL-Morshedy, M. Asymmetric randomly censored mortality distribution: Bayesian framework and parametric bootstrap with application to COVID-19 data. J. Math. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Zellner, A. Bayesian and Non-Bayesian Estimation Using Balanced Loss Functions; Springer: New York, NY, USA, 1994; pp. 377–390. [Google Scholar]
- Ahmadi, J.; Jozani, M.J.; Marchand, É.; Parsian, A. Bayes estimation based on k-record data from a general class of distributions under balanced type loss functions. J. Stat. Plan. Inference 2009, 139, 1180–1189. [Google Scholar] [CrossRef]
- Jafari, J.M.; Marchand, É.; Parsian, A. Bayesian and Robust Bayesian analysis under a general class of balanced loss functions. Stat. Pap. 2012, 53, 51–60. [Google Scholar] [CrossRef]
- Oksuz, K.; Cam, B.C.; Akbas, E.; Kalkan, S. A ranking-based, balanced loss function unifying classification and localisation in object detection. Adv. Neural Inf. Process. 2020, 33, 15534–15545. [Google Scholar]
- Yousef, M.M.; Almetwally, E.M. Multi stress-strength reliability based on progressive first failure for Kumaraswamy model: Bayesian and non-Bayesian estimation. Symmetry 2021, 13, 2120. [Google Scholar] [CrossRef]
- Benkhaled, A.; Hamdaoui, A.; Almutiry, W.; Alshahrani, M.; Terbeche, M. A study of minimax shrinkage estimators dominating the James-Stein estimator under the balanced loss function. Open Math. 2022, 20, 1–11. [Google Scholar] [CrossRef]
- Xie, Z.; Shu, C.; Fu, Y.; Zhou, J.; Chen, D. Balanced Loss Function for Accurate Surface Defect Segmentation. Appl. Sci. 2023, 13, 826. [Google Scholar] [CrossRef]
- Yan, S.; Gendai, G. Bayes estimation for reliability indexes of cold standby system. J. N. China Electr. Power Univ. 2003, 30, 96–99. [Google Scholar]
- Shi, Y.; Shi, X.; Xu, Y. Approximate confidence limits of the reliability performances for a cold standby series system. J. Appl. Math. Comput. 2005, 19, 439–445. [Google Scholar] [CrossRef]
- Petrone, S.; Rizzelli, S.; Rousseau, J.; Scricciolo, C. Empirical Bayes methods in classical and Bayesian inference. Metron 2014, 72, 201–215. [Google Scholar] [CrossRef]
- Gross, A.J.; Clark, V.A. Survival Distributions: Reliability Applications in the Biomedical Sciences; Wiley: New York, NY, USA, 1975; Volume 11. [Google Scholar]
I | II | III |
---|---|---|
n | m | T | CS | Censored Data |
---|---|---|---|---|
20 | 16 | 1.75 | I | 1.1, 1.5, 1.6, 1.6, 1.7, 1.7, 1.7 |
II | 1.1, 1.2, 1.3, 1.4, 1.4, 1.5, 1.6, 1.6, 1.7, 1.7, 1.7 | |||
III | 1.1, 1.3, 1.4, 1.6, 1.7, 1.7, 1.7 | |||
2.75 | I | 1.1, 1.5, 1.6, 1.6, 1.7, 1.7, 1.7, 1.8, 1.8, 1.9, 2., 2.2, 2.3, 2.7 | ||
II | 1.1, 1.2, 1.3, 1.4, 1.4, 1.5, 1.6, 1.6, 1.7, 1.7, 1.7, 1.8, 1.8, 1.9, 2., 2.2 | |||
III | 1.1, 1.3, 1.4, 1.6, 1.7, 1.7, 1.7, 1.8, 1.8, 1.9, 2., 2.2, 2.3, 2.7 |
Bayes Estimate | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BLINEX | |||||||||||||||
MLE | BSE | ||||||||||||||
CS | |||||||||||||||
20 | 16 | 1.75 | I | 2.7417 | 0.8685 | 0.6415 | 2.7927 | 0.8669 | 0.6535 | 2.8917 | 0.8671 | 0.6585 | 2.0788 | 0.8651 | 0.6102 |
II | 4.0743 | 0.811 | 0.9533 | 4.0484 | 0.8129 | 0.9473 | 4.1803 | 0.8131 | 0.9541 | 2.9538 | 0.8108 | 0.8855 | |||
III | 2.6557 | 0.8724 | 0.6214 | 2.7102 | 0.8706 | 0.6342 | 2.8035 | 0.8707 | 0.6389 | 2.0368 | 0.8689 | 0.5933 | |||
2.75 | I | 3.0085 | 0.8567 | 0.704 | 3.0288 | 0.8562 | 0.7087 | 3.0873 | 0.8563 | 0.7118 | 2.5149 | 0.8551 | 0.6804 | ||
II | 4.0476 | 0.8121 | 0.9471 | 4.0304 | 0.8134 | 0.9431 | 4.1208 | 0.8136 | 0.9478 | 3.1973 | 0.8119 | 0.8988 | |||
III | 2.956 | 0.859 | 0.6917 | 2.9777 | 0.8584 | 0.6968 | 3.0343 | 0.8585 | 0.6997 | 2.4816 | 0.8574 | 0.6694 |
Empirical Bayes Estimate | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BLINEX | ||||||||||||
BSE | ||||||||||||
CS | ||||||||||||
20 | 16 | 1.75 | I | 2.807 | 0.8819 | 0.6568 | 2.9111 | 0.9207 | 0.7037 | 2.0477 | 0.8612 | 1.6901 |
II | 4.0769 | 0.8022 | 0.9539 | 4.2253 | 0.7776 | 0.9378 | 3.0151 | 0.8112 | 2.3031 | |||
III | 2.7315 | 0.8877 | 0.6391 | 2.8332 | 0.9323 | 0.6927 | 2.0056 | 0.8641 | 1.6541 | |||
2.75 | I | 2.9914 | 0.8416 | 0.6999 | 3.045 | 0.8005 | 0.6595 | 2.5354 | 0.8601 | 1.8589 | ||
II | 3.968 | 0.7864 | 0.9285 | 4.084 | 0.7087 | 0.86 | 3.2721 | 0.8196 | 2.3308 | |||
III | 2.9392 | 0.8435 | 0.6877 | 2.9898 | 0.8015 | 0.6459 | 2.5015 | 0.8625 | 1.8363 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, A.F.; Alyami, S.A.; Yousef, M.M. Utilizing Empirical Bayes Estimation to Assess Reliability in Inverted Exponentiated Rayleigh Distribution with Progressive Hybrid Censored Medical Data. Axioms 2023, 12, 872. https://doi.org/10.3390/axioms12090872
Hashem AF, Alyami SA, Yousef MM. Utilizing Empirical Bayes Estimation to Assess Reliability in Inverted Exponentiated Rayleigh Distribution with Progressive Hybrid Censored Medical Data. Axioms. 2023; 12(9):872. https://doi.org/10.3390/axioms12090872
Chicago/Turabian StyleHashem, Atef F., Salem A. Alyami, and Manal M. Yousef. 2023. "Utilizing Empirical Bayes Estimation to Assess Reliability in Inverted Exponentiated Rayleigh Distribution with Progressive Hybrid Censored Medical Data" Axioms 12, no. 9: 872. https://doi.org/10.3390/axioms12090872
APA StyleHashem, A. F., Alyami, S. A., & Yousef, M. M. (2023). Utilizing Empirical Bayes Estimation to Assess Reliability in Inverted Exponentiated Rayleigh Distribution with Progressive Hybrid Censored Medical Data. Axioms, 12(9), 872. https://doi.org/10.3390/axioms12090872