On the Modified Numerical Methods for Partial Differential Equations Involving Fractional Derivatives
Abstract
:1. Introduction
2. Preliminary Concepts
- 1.
- , if is a constant function.
- 2.
- .
- 3.
- .
- 4.
- .
- 1.
- Both Caputo and Riemann–Liouville fractional derivatives have singular kernels.
- 2.
- Both AB–Caputo and AB–Riemann–Liouville fractional derivatives have non-singular and non-local kernels.
- 3.
- Both Caputo and AB–Caputo fractional derivatives of a constant function are zero.
- 4.
- Both Riemann–Liouville and AB–Riemann–Liouville fractional derivatives of a constant function do not equal zero.
3. Conceptualization of (Lvim)
4. Conceptualization of (Ladm)
5. Conceptualization of (Lham)
6. Convergence Analysis
7. Implementation of Techniques
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. An Introduction to Fractiorlal Derivatives, Fractiorlal Differential Eqnations, to Methods of Their Solutiori and Some of Their Applications; Academic Press: London, UK, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Guo, B.; Pu, X.; Huang, F. Fractional Partial Differential Equations and Their Numerical Solutions; World Scientific: Singapore, 2015. [Google Scholar]
- Daftardar-Gejji, V. Fractional Calculus and Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Whitham, G.B. Variational methods and applications to water waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1967, 299, 6–25. [Google Scholar]
- Fornberg, B.; Whitham, G.B. A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1978, 289, 373–404. [Google Scholar]
- Wazwaz, A.M. The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations. Comput. Math. Appl. 2007, 54, 926–932. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The variational iteration method for analytic treatment for linear and nonlinear ODEs. Appl. Math. Comput. 2009, 212, 120–134. [Google Scholar] [CrossRef]
- He, J.H. Variational iteration method–a kind of non-linear analytical technique: Some examples. Int. J. Non-Linear Mech. 1999, 34, 699–708. [Google Scholar] [CrossRef]
- He, J. A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 1997, 2, 230–235. [Google Scholar] [CrossRef]
- Adomian, G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 1988, 135, 501–544. [Google Scholar] [CrossRef]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Springer Science & Business Media: New York, NY, USA, 2013; Volume 60. [Google Scholar]
- Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University Shanghai, Shanghai, China, 1992. [Google Scholar]
- Liao, S. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513. [Google Scholar] [CrossRef]
- Liao, S. Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 2005, 169, 1186–1194. [Google Scholar] [CrossRef]
- Liao, S. Beyond Perturbation: Introduction to the Homotopy Analysis Method; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Donatelli, M.; Mazza, M.; Serra-Capizzano, S. Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 2016, 307, 262–279. [Google Scholar] [CrossRef]
- Donatelli, M.; Mazza, M.; Serra-Capizzano, S. Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations. SIAM J. Sci. Comput. 2018, 40, A4007–A4039. [Google Scholar] [CrossRef]
- Bu, W.; Liu, X.; Tang, Y.; Yang, J. Finite element multigrid method for multi-term time fractional advection diffusion equations. Int. J. Model. Simul. Sci. Comput. 2015, 6, 1540001. [Google Scholar] [CrossRef]
- Spiegel, M.R. Schaum’s Outline of Theory and Problems of Laplace Transforms; Schaums Outline Series; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Maitama, S.; Zhao, W. New Integral Transform: Shehu Transform a Generalization of Sumudu and Laplace Transform for Solving Differential Equations. Int. J. Anal. Appl. 2019, 17, 167–190. [Google Scholar]
- Watugala, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems. Int. J. Math. Educ. Sci. Technol. 1993, 24, 35–43. [Google Scholar] [CrossRef]
- Elzaki, T.M. The new integral transform Elzaki transform. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Gao, X.; Lai, S.; Chen, H. The stability of solutions for the Fornberg–Whitham equation in L1(R) space. Bound. Value Probl. 2018, 2018, 142. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Baleanu, D. A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag–Leffler-type kernel. Eur. Phys. J. Plus 2018, 133, 70. [Google Scholar] [CrossRef]
- Sartanpara, P.P.; Meher, R.; Meher, S.K. The generalized time-fractional Fornberg–Whitham equation: An analytic approach. Partial. Differ. Equ. Appl. Math. 2022, 5, 100350. [Google Scholar] [CrossRef]
- Shah, N.A.; Dassios, I.; El-Zahar, E.R.; Chung, J.D.; Taherifar, S. The Variational Iteration Transform Method for Solving the Time-Fractional Fornberg–Whitham Equation and Comparison with Decomposition Transform Method. Mathematics 2021, 9, 141. [Google Scholar] [CrossRef]
- Iqbal, N.; Yasmin, H.; Ali, A.; Bariq, A.; Al-Sawalha, M.M.; Mohammed, W.W. Numerical methods for fractional-order Fornberg–Whitham equations in the sense of Atangana-Baleanu derivative. J. Funct. Spaces 2021, 2021, 2197247. [Google Scholar] [CrossRef]
- Haroon, F.; Mukhtar, S.; Shah, R. Fractional View Analysis of Fornberg–Whitham Equations by Using Elzaki Transform. Symmetry 2022, 14, 2118. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Khan, H.; Shah, R.; Aly, S.; Baleanu, D. The analytical analysis of time-fractional Fornberg–Whitham equations. Mathematics 2020, 8, 987. [Google Scholar] [CrossRef]
- Shah, R.; Alkhezi, Y.; Alhamad, K. An Analytical Approach to Solve the Fractional Benney Equation Using the q-Homotopy Analysis Transform Method. Symmetry 2023, 15, 669. [Google Scholar] [CrossRef]
- Nonlaopon, K.; Naeem, M.; Zidan, A.M.; Shah, R.; Alsanad, A.; Gumaei, A. Numerical investigation of the time-fractional Whitham–Broer–Kaup equation involving without singular kernel operators. Complexity 2021, 2021, 7979365. [Google Scholar] [CrossRef]
- Mofarreh, F.; Zidan, A.M.; Naeem, M.; Shah, R.; Ullah, R.; Nonlaopon, K. Analytical analysis of fractional-order physical models via a caputo-fabrizio operator. J. Funct. Spaces 2021, 2021, 7250308. [Google Scholar] [CrossRef]
- Sunitha, M.; Gamaoun, F.; Abdulrahman, A.; Malagi, N.S.; Singh, S.; Gowda, R.J.; Gowda, R.P. An efficient analytical approach with novel integral transform to study the two-dimensional solute transport problem. Ain Shams Eng. J. 2023, 14, 101878. [Google Scholar] [CrossRef]
- Alsidrani, F.; Kılıçman, A.; Senu, N. Approximate Solutions for Time-Fractional Fornberg–Whitham Equation with Variable Coefficients. Fractal Fract. 2023, 7, 260. [Google Scholar] [CrossRef]
- Alshammari, M.; Iqbal, N.; Ntwiga, D.B. A comparative study of fractional-order diffusion model within Atangana-Baleanu-Caputo operator. J. Funct. Spaces 2022, 2022, 9226707. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, Y.; Li, S. Variational Problems with Partial Fractional Derivative: Optimal Conditions and Noether’s Theorem. J. Funct. Spaces 2018, 2018, 4197673. [Google Scholar] [CrossRef]
- Dehghan, M.; Manafian, J.; Saadatmandi, A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. Int. J. 2010, 26, 448–479. [Google Scholar] [CrossRef]
- Singh, B.K.; Kumar, P. Fractional variational iteration method for solving fractional partial differential equations with proportional delay. Int. J. Differ. Equ. 2017, 2017, 5206380. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar]
- Pho, K.H.; Heydari, M.H.; Tuan, B.A.; Mahmoudi, M.R. Numerical study of nonlinear 2D optimal control problems with multi-term variable-order fractional derivatives in the Atangana-Baleanu-Caputo sense. Chaos Solitons Fractals 2020, 134, 109695. [Google Scholar] [CrossRef]
- Abdeljawad, T. A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 2017, 2017, 130. [Google Scholar] [CrossRef] [PubMed]
- Ganie, A.H.; AlBaidani, M.M.; Khan, A. A Comparative Study of the Fractional Partial Differential Equations via Novel Transform. Symmetry 2023, 15, 1101. [Google Scholar] [CrossRef]
- Odibat, Z.M. A study on the convergence of variational iteration method. Math. Comput. Model. 2010, 51, 1181–1192. [Google Scholar] [CrossRef]
−1 | 2.5608997 | 1.5243783 | 0.86575929 | 0.40880488 | 0.04587202 |
−0.9 | 2.4391575 | 1.3960871 | 0.76228210 | 0.33540222 | 0.00334838 |
−0.6 | 2.1324828 | 1.1627305 | 0.64564224 | 0.33060677 | 0.08109736 |
−0.3 | 2.0521899 | 1.3781686 | 1.0617518 | 0.89122639 | 0.75621919 |
0 | 2.4865829 | 2.4865829 | 2.4865829 | 2.4865829 | 2.4865829 |
0.3 | 3.9237917 | 5.2158466 | 5.6856178 | 5.8602898 | 6.0000555 |
0.6 | 7.1665349 | 10.732416 | 11.866131 | 12.169850 | 12.418299 |
0.9 | 13.506698 | 20.874006 | 22.903632 | 23.192297 | 23.447494 |
1 | 16.633409 | 25.737892 | 28.122363 | 28.346017 | 28.560704 |
−1 | 0.30174365 | 0.47301413 | 0.75801599 | 0.94465579 | 1.0532908 |
−0.9 | 0.25833658 | 0.42310542 | 0.70823490 | 0.89945100 | 1.0132440 |
−0.6 | 0.18505643 | 0.31900487 | 0.57581633 | 0.75791444 | 0.87163404 |
−0.3 | 0.23836754 | 0.31985520 | 0.48993265 | 0.61546219 | 0.69638419 |
0 | 0.48658288 | 0.48658288 | 0.48658288 | 0.48658288 | 0.48658288 |
0.3 | 1.0209246 | 0.90100711 | 0.61502581 | 0.39227107 | 0.24291962 |
0.6 | 1.9618160 | 1.6716411 | 0.94158718 | 0.36204438 | 0.03160977 |
0.9 | 3.4667163 | 2.9409261 | 1.5544244 | 0.43648878 | 0.33078392 |
1 | 4.1274189 | 3.5054335 | 1.8414253 | 0.49356178 | 0.43430132 |
−1 | 0.29525006 | 0.29525654 | 0.29525677 | 0.29525308 | 0.29524874 |
−0.9 | 0.31037496 | 0.31038109 | 0.31038130 | 0.31037782 | 0.31037371 |
−0.6 | 0.36055931 | 0.36056406 | 0.36056422 | 0.36056153 | 0.36055834 |
−0.3 | 0.41885797 | 0.41886072 | 0.41886082 | 0.41885925 | 0.41885741 |
0 | 0.48658288 | 0.48658288 | 0.48658288 | 0.48658288 | 0.48658288 |
0.3 | 0.56525811 | 0.56525441 | 0.56525431 | 0.56525641 | 0.56525891 |
0.6 | 0.65665448 | 0.65664578 | 0.65664548 | 0.65665038 | 0.65665618 |
0.9 | 0.76282858 | 0.76281348 | 0.76281288 | 0.76282148 | 0.76283158 |
1 | 0.80190628 | 0.80188868 | 0.80188808 | 0.80189798 | 0.80190988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsidrani, F.; Kılıçman, A.; Senu, N. On the Modified Numerical Methods for Partial Differential Equations Involving Fractional Derivatives. Axioms 2023, 12, 901. https://doi.org/10.3390/axioms12090901
Alsidrani F, Kılıçman A, Senu N. On the Modified Numerical Methods for Partial Differential Equations Involving Fractional Derivatives. Axioms. 2023; 12(9):901. https://doi.org/10.3390/axioms12090901
Chicago/Turabian StyleAlsidrani, Fahad, Adem Kılıçman, and Norazak Senu. 2023. "On the Modified Numerical Methods for Partial Differential Equations Involving Fractional Derivatives" Axioms 12, no. 9: 901. https://doi.org/10.3390/axioms12090901
APA StyleAlsidrani, F., Kılıçman, A., & Senu, N. (2023). On the Modified Numerical Methods for Partial Differential Equations Involving Fractional Derivatives. Axioms, 12(9), 901. https://doi.org/10.3390/axioms12090901