Optimizing Port Multi-AGV Trajectory Planning through Priority Coordination: Enhancing Efficiency and Safety
Abstract
:1. Introduction
1.1. Related Work
1.2. Our Contribution
2. Problem Formulation
2.1. Enhanced Graph Search
2.1.1. Mobile AGV Model
2.1.2. Obstacle Avoidance
2.1.3. Numerical Method
3. Single AGV Simulation
3.1. Numerical Simulation
Algorithm 1: Single AGV local planning |
3.2. Single AGV Gazebo Simulation
4. Multi AGVs Global Planning
Algorithm 2: Global coordinate circle center |
4.1. Port Overview Scenes
4.2. Local Intersections Scenes
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latombe, J.C. Robot Motion Planning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 124. [Google Scholar]
- LaValle, S. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Stocco, D.M. A StAR search: Implications in controlling steroidogenesis. Biol. Reprod. 1997, 56, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Tseng, F.H.; Liang, T.T.; Lee, C.H.; Der Chou, L.; Chao, H.C. A star search algorithm for civil UAV path planning with 3G communication. In Proceedings of the 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kitakyushu, Japan, 27–29 August 2014; pp. 942–945. [Google Scholar]
- Deits, R.; Tedrake, R. Computing large convex regions of obstacle-free space through semidefinite programming. In Proceedings of the Algorithmic Foundations of Robotics XI: Selected Contributions of the Eleventh International Workshop on the Algorithmic Foundations of Robotics, Istanbul, Turkey, 3–5 August 2015; pp. 109–124. [Google Scholar]
- Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Practical search techniques in path planning for autonomous driving. Ann Arbor 2008, 1001, 18–80. [Google Scholar]
- Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef]
- Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA, 24–28 April 2000; Volume 2, pp. 995–1001. [Google Scholar]
- Zhang, L.; Shi, X.; Yi, Y.; Tang, L.; Peng, J.; Zou, J. Mobile Robot Path Planning Algorithm Based on RRT_Connect. Electronics 2023, 12, 2456. [Google Scholar] [CrossRef]
- Farouki, R.; Koenig, T.; Tarabanis, K.; Korein, J.; Batchelder, J. Path planning with offset curves for layered fabrication processes. J. Manuf. Syst. 1995, 14, 355–368. [Google Scholar] [CrossRef]
- Qian, L.; Xu, X.; Zeng, Y.; Li, X.; Sun, Z.; Song, H. Synchronous maneuver searching and trajectory planning for autonomous vehicles in dynamic traffic environments. IEEE Intell. Transp. Syst. Mag. 2020, 14, 57–73. [Google Scholar] [CrossRef]
- Werling, M.; Kammel, S.; Ziegler, J.; Gröll, L. Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. Int. J. Robot. Res. 2012, 31, 346–359. [Google Scholar] [CrossRef]
- Brito, B.; Floor, B.; Ferranti, L.; Alonso-Mora, J. Model predictive contouring control for collision avoidance in unstructured dynamic environments. IEEE Robot. Autom. Lett. 2019, 4, 4459–4466. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, J.; Shen, J.; Fernandez, G.; Hong, D.W. Optimization based motion planning for multi-limbed vertical climbing robots. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), The Venetian Macao, Macau, 4–8 November 2019; pp. 1918–1925. [Google Scholar]
- Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef]
- Teso-Fz-Betoño, D.; Zulueta, E.; Fernandez-Gamiz, U.; Saenz-Aguirre, A.; Martinez, R. Predictive dynamic window approach development with artificial neural fuzzy inference improvement. Electronics 2019, 8, 935. [Google Scholar] [CrossRef]
- Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; Bertram, T. Efficient trajectory optimization using a sparse model. In Proceedings of the 2013 European Conference on Mobile Robots, Barcelona, Spain, 25–27 September 2013; pp. 138–143. [Google Scholar]
- Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; Bertram, T. Trajectory modification considering dynamic constraints of autonomous robots. In Proceedings of the ROBOTIK 2012: 7th German Conference on Robotics, Munich, Germany, 21–22 May 2012; pp. 1–6. [Google Scholar]
- Choset, H. Robotic Motion Planning: Potential Functions; Robotics Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2010. [Google Scholar]
- Ji, Y.; Ni, L.; Zhao, C.; Lei, C.; Du, Y.; Wang, W. TriPField: A 3D potential field model and its applications to local path planning of autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3541–3554. [Google Scholar] [CrossRef]
- Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 2, pp. 1470–1477. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Ashtiani, F.; Fayazi, S.A.; Vahidi, A. Multi-intersection traffic management for autonomous vehicles via distributed mixed integer linear programming. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 6341–6346. [Google Scholar]
- Mahbub, A.I.; Malikopoulos, A.A.; Zhao, L. Decentralized optimal coordination of connected and automated vehicles for multiple traffic scenarios. Automatica 2020, 117, 108958. [Google Scholar] [CrossRef]
- Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 2015, 219, 40–66. [Google Scholar] [CrossRef]
- Li, J.; Ruml, W.; Koenig, S. Eecbs: A bounded-suboptimal search for multi-agent path finding. In Proceedings of the the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35, pp. 12353–12362. [Google Scholar]
- Mellinger, D.; Kushleyev, A.; Kumar, V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA, 14–18 May 2012; pp. 477–483. [Google Scholar]
- Augugliaro, F.; Schoellig, A.P.; D’Andrea, R. Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1917–1922. [Google Scholar]
- Lee, D.; Kim, J.; Cho, K.; Sung, Y. Advanced double layered multi-agent Systems based on A3C in real-time path planning. Electronics 2021, 10, 2762. [Google Scholar] [CrossRef]
- Males, L.; Sumic, D.; Rosic, M. Applications of Multi-Agent Systems in Unmanned Surface Vessels. Electronics 2022, 11, 3182. [Google Scholar] [CrossRef]
- Qiu, H. Multi-agent navigation based on deep reinforcement learning and traditional pathfinding algorithm. arXiv 2020, arXiv:2012.09134. [Google Scholar]
- Teodorovic, D. Transport modeling by multi-agent systems: A swarm intelligence approach. Transp. Plan. Technol. 2003, 26, 289–312. [Google Scholar] [CrossRef]
- Wu, J.P.; Peng, Z.H.; Chen, J. 3D multi-constraint route planning for UAV low-altitude penetration based on multi-agent genetic algorithm. IFAC Proc. Vol. 2011, 44, 11821–11826. [Google Scholar] [CrossRef]
- Nowé, A.; Vrancx, P.; De Hauwere, Y.M. Game theory and multi-agent reinforcement learning. In Reinforcement Learning: State-of-the-Art; Springer: Berlin/Heidelberg, Germany, 2012; pp. 441–470. [Google Scholar]
- Bhattacharya, P.; Gavrilova, M.L. Voronoi diagram in optimal path planning. In Proceedings of the 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007), Pontypridd, UK, 9–11 July 2007; pp. 38–47. [Google Scholar]
- You-lun, X.; Han, D. General Criterion And Control Strategy Of Collision-free Movement For Manipulators. In Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics, Beijing and Shenyang, China, 8–12 August 1988; Volume 2, pp. 783–786. [Google Scholar]
- Zhu, Y.; Tang, H. Automatic Damage Detection and Diagnosis for Hydraulic Structures Using Drones and Artificial Intelligence Techniques. Remote Sens. 2023, 15, 615. [Google Scholar] [CrossRef]
- Zhang, M.; Taimuri, G.; Zhang, J.; Hirdaris, S. A deep learning method for the prediction of 6-DoF ship motions in real conditions. Proc. Inst. Mech. Eng. Part J. Eng. Marit. Environ. 2023, 14750902231157852. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, L.; Manocha, D. Collision-free and smooth trajectory computation in cluttered environments. Int. J. Robot. Res. 2012, 31, 1155–1175. [Google Scholar] [CrossRef]
- Kobilarov, M. Discrete Geometric Motion Control of Autonomous Vehicles. Ph.D. Thesis, University of Southern California, Los Angeles, CA, USA, 2008. [Google Scholar]
- Glass, K.; Colbaugh, R.; Lim, D.; Seraji, H. Real-time collision avoidance for redundant manipulators. IEEE Trans. Robot. Autom. 1995, 11, 448–457. [Google Scholar] [CrossRef]
- Van Den Bergen, G. Collision Detection in Interactive 3D Environments; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Dutta, J.; Deb, K.; Tulshyan, R.; Arora, R. Approximate KKT points and a proximity measure for termination. J. Glob. Optim. 2013, 56, 1463–1499. [Google Scholar] [CrossRef]
- Betts, J.T. Survey of numerical methods for trajectory optimization. J. Guid. Control. Dyn. 1998, 21, 193–207. [Google Scholar] [CrossRef]
- Andersson, J.A.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A software framework for nonlinear optimization and optimal control. Math. Program. Comput. 2019, 11, 1–36. [Google Scholar] [CrossRef]
- Bell, B.M. CppAD: A package for C++ algorithmic differentiation. Comput. Infrastruct. Oper. Res. 2012, 57. [Google Scholar]
- Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 2006, 106, 25–57. [Google Scholar] [CrossRef]
- Andrei, N.; Andrei, N. A SQP algorithm for large-scale constrained optimization: SNOPT. In Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 317–330. [Google Scholar]
- Morrison, D.D.; Riley, J.D.; Zancanaro, J.F. Multiple shooting method for two-point boundary value problems. Commun. ACM 1962, 5, 613–614. [Google Scholar] [CrossRef]
- Xu, H.; Feng, S.; Zhang, Y.; Li, L. A grouping-based cooperative driving strategy for CAVs merging problems. IEEE Trans. Veh. Technol. 2019, 68, 6125–6136. [Google Scholar] [CrossRef]
- Rinchi, M.; Pugi, L.; Bartolini, F.; Gozzi, L. Design of control system to prevent forklift capsize. Int. J. Veh. Syst. Model. Test. 2010, 5, 35–58. [Google Scholar] [CrossRef]
Symbol | Description | Value | Unit |
---|---|---|---|
l | wheelbase | 0.65 | |
r | wheel radium | 0.330 | |
axle track | 0.605 | ||
m | weight | 70 | |
max speed | 1.5 | ||
minimum turning radius | 1.6 | ||
moment of inertia in Z axis | 51.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Shi, S.; Chen, Z.; Wang, T.; Miao, L.; Song, H. Optimizing Port Multi-AGV Trajectory Planning through Priority Coordination: Enhancing Efficiency and Safety. Axioms 2023, 12, 900. https://doi.org/10.3390/axioms12090900
Chen Y, Shi S, Chen Z, Wang T, Miao L, Song H. Optimizing Port Multi-AGV Trajectory Planning through Priority Coordination: Enhancing Efficiency and Safety. Axioms. 2023; 12(9):900. https://doi.org/10.3390/axioms12090900
Chicago/Turabian StyleChen, Yongjun, Shuquan Shi, Zong Chen, Tengfei Wang, Longkun Miao, and Huiting Song. 2023. "Optimizing Port Multi-AGV Trajectory Planning through Priority Coordination: Enhancing Efficiency and Safety" Axioms 12, no. 9: 900. https://doi.org/10.3390/axioms12090900
APA StyleChen, Y., Shi, S., Chen, Z., Wang, T., Miao, L., & Song, H. (2023). Optimizing Port Multi-AGV Trajectory Planning through Priority Coordination: Enhancing Efficiency and Safety. Axioms, 12(9), 900. https://doi.org/10.3390/axioms12090900