Autonomous Second-Order ODEs: A Geometric Approach
Abstract
:1. Introduction
2. Preliminaries
2.1. Jet Bundles and Second-Order ODEs
2.2. Riemannian Geometry
3. Riemannian Metric Associated with Autonomous Second-Order ODEs
4. Energy Foliation
5. Lagrangian Mechanical Systems
5.1. Lagrangian for a Particle in a Gravitational Field
5.2. Damped Harmonic Oscillator
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheb-Terrab, E.S.; Roche, A.D. Integrating factors for second-order ODEs. J. Symb. Comput. 1999, 27, 501–519. [Google Scholar] [CrossRef]
- Duarte, L.; Duarte, S.; Da Mota, L.; Skea, J. Solving second-order ordinary differential equations by extending the Prelle-Singer method. J. Phys. A Math. Gen. 2001, 34, 3015. [Google Scholar] [CrossRef]
- Muriel, C.; Romero, J.L. First integrals, integrating factors and λ-symmetries of second-order differential equations. J. Phys. A Math. Theor. 2009, 42, 365207. [Google Scholar] [CrossRef]
- Yumaguzhin, V.A. Differential invariants of second order ODEs, I. Acta Appl. Math. 2010, 109, 283–313. [Google Scholar] [CrossRef]
- Pan-Collantes, A.J.; Ruiz, A.; Muriel, C.; Romero, J.L. C∞-symmetries of distributions and integrability. J. Diff. Eq. 2023, 348, 126–153. [Google Scholar] [CrossRef]
- Duarte, L.; Eiras, J.; Da Mota, L. An efficient way to determine Liouvillian first integrals of rational second order ordinary differential equations. Comput. Phys. Commun. 2024, 298, 109088. [Google Scholar] [CrossRef]
- Al-Hasan, Y. Evaluation of MATLAB Methods used to Solve Second Order Linear ODE. Res. J. Appl. Sci. 2014, 7, 2634–2638. [Google Scholar] [CrossRef]
- Waeleh, N.; Majid, Z.A. Numerical algorithm of block method for general second order ODEs using variable step size. Sains Malays. 2017, 46, 817–824. [Google Scholar] [CrossRef]
- Al-Jawary, M.; Adwan, M.; Radhi, G. Three iterative methods for solving second order nonlinear ODEs arising in physics. J. King Saud Univ. Sci. 2020, 32, 312–323. [Google Scholar] [CrossRef]
- Santana, M. Exact Solutions of Nonlinear Second-Order Autonomous Ordinary Differential Equations: Application to Mechanical Systems. Dynamics 2023, 3, 444–467. [Google Scholar] [CrossRef]
- Bayrakdar, Z.O.; Bayrakdar, T. Burgers’ Equations in the Riemannian Geometry Associated with First-Order Differential Equations. Adv. Math. Phys. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Bayrakdar, T.; Ergin, A. Minimal Surfaces in Three-Dimensional Riemannian Manifold Associated with a Second-Order ODE. Mediterr. J. Math. 2018, 15, 183. [Google Scholar] [CrossRef]
- Bayrakdar, Z.O.; Bayrakdar, T. A geometric description for simple and damped harmonic oscillators. Turk. J. Math. 2019, 43, 2540–2548. [Google Scholar] [CrossRef]
- Bayrakdar, T.; Bayrakdar, Z. The Curvature Property of a Linear Dynamical System. In Avrupa Bilim ve Teknoloji Dergisi; DergiPark: Turkey, 2021; pp. 1288–1290. [Google Scholar]
- Bayrakdar, T. Geometry of a surface in Riemannian 3-manifold corresponding to a smooth autonomous dynamical system. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2350024. [Google Scholar] [CrossRef]
- Pan-Collantes, A.J.; Álvarez García, J.A. Surfaces associated with first-order ODEs. arXiv 2023, arXiv:2312.04489. [Google Scholar]
- Pan-Collantes, A.J.; Álvarez García, J.A. Integration of first-order ODEs by Jacobi fields. arXiv 2024, arXiv:2404.14352. [Google Scholar]
- Bayrakdar, T.; Turhan, A. Equivalence problem for first and second-order ODEs with a quadratic restriction. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2450287. [Google Scholar] [CrossRef]
- Saunders, D.J. The Geometry of Jet Bundles; Cambridge University Press: Cambridge, UK, 1989; Volume 142. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986; Volume 107. [Google Scholar]
- Stephani, H. Differential Equations: Their Solutions Using Symmetry; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Chen, W.; Chern, S.S.; Lam, K.S. Lectures on Differential Geometry; World Scientific Publishing Company: Beijing, China, 1999; Volume 1. [Google Scholar]
- Morita, S. Geometry of Differential Forms; American Mathematical Society: Providence, RI, USA, 2001. [Google Scholar]
- Ivey, T.A.; Landsberg, J.M. Cartan for Beginners; American Mathematical Society: Providence, RI, USA, 2016; Volume 175. [Google Scholar]
- Lee, J.M. Introduction to Riemannian Manifolds; Springer International Publishing: Cham, Switzerland, 2018; Volume 2. [Google Scholar]
- Do Carmo, M.P. Riemannian Geometry; Birkhäuser Boston: Boston, MA, USA, 1992; Volume 6. [Google Scholar]
- Cariñena, J.F.; Muñoz-Lecanda, M.C. Geodesic and Newtonian Vector Fields and Symmetries of Mechanical Systems. Symmetry 2023, 15, 181. [Google Scholar] [CrossRef]
- Spivak, M. A Comprehensive Introduction to Differential Geometry; Publish or Perish: Houston, TX, USA, 1999; Volume 3. [Google Scholar]
- Lee, J.M. Smooth Manifolds; Springer: New York, NY, USA, 2013. [Google Scholar]
- Khan, B.A.; Chatterjee, S.; Sekh, G.A.; Talukdar, B. Inverse Variational Problem for Nonlinear Dynamical Systems. arXiv 2020, arXiv:2008.03116. [Google Scholar] [CrossRef]
- Douglas, J. Solution of the inverse problem of the calculus of variations. Trans. Am. Math. Soc. 1941, 50, 71–128. [Google Scholar] [CrossRef]
- Torres del Castillo, G.; Rubalcava García, I. Hamiltonians and Lagrangians of non-autonomous one-dimensional mechanical systems. Rev. Mex. Fis. 2006, 52, 429–432. [Google Scholar]
- Torres del Castillo, G. The Hamiltonian description of a second-order ODE. J. Phys. A Math. Theor. 2009, 42, 265202. [Google Scholar] [CrossRef]
- Sullivan, D. A homological characterization of foliations consisting of minimal surfaces. Comment. Math. Helv. 1979, 54, 218–223. [Google Scholar] [CrossRef]
- Oshikiri, G. A remark on minimal foliations. Tohoku Math J. Second Ser. 1981, 33, 133–137. [Google Scholar] [CrossRef]
- Haefliger, A. Some remarks on foliations with minimal leaves. J. Differ. Geom. 1980, 15, 269–284. [Google Scholar] [CrossRef]
- Oshikiri, G. Some remarks on minimal foliations. Tohoku Math J. Second Ser. 1987, 39, 223–229. [Google Scholar] [CrossRef]
- Moser, J. Minimal foliations on a torus. In Topics in Calculus of Variations: Lectures Given at the 2nd 1987 Session of the Centro Internazionale Matematico Estivo (CIME) Held at Montecatini Terme, Italy, 20–28 July 1987; Springer: Berlin/Heidelberg, Germany, 2006; pp. 62–99. [Google Scholar]
- Goldstein, H. Classical Mechanics; Addison Wesley: Reading, PA, USA, 1950. [Google Scholar]
- Poisson, E.; Will, C.M. Gravity: Newtonian, Post-Newtonian, Relativistic; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Chandrasekar, V.; Senthilvelan, M.; Lakshmanan, M. On the Lagrangian and Hamiltonian Description of the Damped Linear Harmonic Oscillator. J. Math. Phys. 2007, 48, 032701. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan-Collantes, A.J.; Álvarez-García, J.A. Autonomous Second-Order ODEs: A Geometric Approach. Axioms 2024, 13, 788. https://doi.org/10.3390/axioms13110788
Pan-Collantes AJ, Álvarez-García JA. Autonomous Second-Order ODEs: A Geometric Approach. Axioms. 2024; 13(11):788. https://doi.org/10.3390/axioms13110788
Chicago/Turabian StylePan-Collantes, Antonio J., and José Antonio Álvarez-García. 2024. "Autonomous Second-Order ODEs: A Geometric Approach" Axioms 13, no. 11: 788. https://doi.org/10.3390/axioms13110788
APA StylePan-Collantes, A. J., & Álvarez-García, J. A. (2024). Autonomous Second-Order ODEs: A Geometric Approach. Axioms, 13(11), 788. https://doi.org/10.3390/axioms13110788