Intrinsic Functional Partially Linear Poisson Regression Model for Count Data
Abstract
:1. Introduction
2. Methodology
2.1. Model Setting
2.2. Parameter Estimation
Algorithm 1 The estimation algorithm for the heat kernel |
|
Algorithm 2 The estimation algorithm for the proposed method |
|
2.3. Two-Component Poisson Mixture Regression with Random Effects
Algorithm 3 Two-component Poisson mixture regression with random effects |
|
3. Data Analysis
3.1. Simulation Studies
- (1)
- , and the other parameters remain unchanged.
- (2)
- values are generated from a normal distribution , where , and the other parameters remain unchanged.
- (3)
- , , , , and the other parameters remain unchanged.
- (4)
- Let be a standard Brownian motion, or or or , and the other parameters remain unchanged.
- (5)
- Let be a U-shaped region or Bitten Torus, and the other parameters remain unchanged.
3.2. Real Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Getaneh, F.B.; Belete, A.G.; Ayres, A.; Ayalew, T.; Muche, A.; Derseh, L. A generalized Poisson regression analysis of determinants of early neonatal mortality in Ethiopia using 2019 Ethiopian mini demographic health survey. Sci. Rep. 2024, 14, 2784. [Google Scholar] [CrossRef] [PubMed]
- Loukas, K.; Karapiperis, D.; Feretzakis, G.; Verykios, V.S. Predicting Football Match Results Using a Poisson Regression Model. Appl. Sci. 2024, 14, 7230. [Google Scholar] [CrossRef]
- Nzuma, J.M.; Mzera, U.I. Evaluating aflatoxin contamination control practices among smallholder maize farmers in Kilifi County, Kenya: A Poisson regression analysis. Environ. Dev. Sustain. 2024, 26, 10029–10041. [Google Scholar] [CrossRef]
- Sakane, S.; Kato, K.; Hata, S.; Nishimura, E.; Araki, R.; Kouyama, K.; Hatao, M.; Matoba, Y.; Matsushita, Y.; Domichi, M.; et al. Association of hypoglycemia problem-solving abilities with severe hypoglycemia in adults with type 1 diabetes: A Poisson regression analysis. Diabetol. Int. 2024, 15, 1–9. [Google Scholar] [CrossRef]
- Irshad, M.R.; Chesneau, C.; Shibu, D.S.; Monisha, M.; Maya, R. Lagrangian Zero Truncated Poisson Distribution: Properties Regression Model and Applications. Symmetry 2022, 14, 1775. [Google Scholar] [CrossRef]
- Weaver, C.G.; Ravani, P.; Oliver, M.J.; Austin, P.C.; Quinn, R.R. Analyzing hospitalization data: Potential limitations of Poisson regression. Nephrol. Dial. Transplant. 2015, 30, 1244–1249. [Google Scholar] [CrossRef]
- Amin, M.; Akram, M.N.; Amanullah, M. On the James-Stein estimator for the Poisson regression model. Commun. Stat.-Simul. Comput. 2022, 51, 5596–5608. [Google Scholar] [CrossRef]
- Abdelwahab, M.M.; Abonazel, M.R.; Hammad, A.T.; El-Masry, A.M. Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model. Axioms 2024, 13, 46. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, Y. Poisson regression with error corrupted high dimensional features. Stat. Sin. 2022, 32, 2023–2046. [Google Scholar] [CrossRef]
- Fu, Q.; Zhou, T.Y.; Guo, X. Modified Poisson regression analysis of grouped and right-censored counts. J. R. Stat. Soc. Ser. A Stat. Soc. 2021, 184, 1347–1367. [Google Scholar] [CrossRef]
- Lu, M.; Loomis, D. Spline-based semiparametric estimation of partially linear Poisson regression with single-index models. J. Nonparametric Stat. 2013, 25, 905–922. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z. A kernel regression model for panel count data with nonparametric covariate functions. Biometrics 2022, 78, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Chiou, J.M.; Müller, H.G. Functional data analysis. Annu. Rev. Stat. Its Appl. 2016, 3, 257–295. [Google Scholar] [CrossRef]
- Dai, X.; Lin, Z.; Müller, H.G. Modeling sparse longitudinal data on Riemannian manifolds. Biometrics 2021, 77, 1328–1341. [Google Scholar] [CrossRef]
- Singh, P.K. Data with non-Euclidean geometry and its characterization. J. Artif. Intell. Technol. 2022, 2, 3–8. [Google Scholar] [CrossRef]
- Suárez, J.L.; García, S.; Herrera, F. A tutorial on distance metric learning: Mathematical foundations, algorithms, experimental analysis, prospects and challenges. Neurocomputing 2021, 425, 300–322. [Google Scholar] [CrossRef]
- Abdelwahab, M.M.; Shalaby, O.A.; Semary, H.E.; Abonazel, M.R. Driving Factors of NOx Emissions in China: Insights from Spatial Regression Analysis. Atmosphere 2024, 15, 793. [Google Scholar] [CrossRef]
- Wood, S.N.; Bravington, M.V.; Hedley, S.L. Soap Film Smoothing. J. R. Stat. Soc. Ser. B Stat. Methodol. 2008, 70, 931–955. [Google Scholar] [CrossRef]
- Lin, L.; Mu, N.; Cheung, P.; Dunson, D. Extrinsic Gaussian Processes for Regression and Classification on Manifolds. Bayesian Anal. 2019, 14, 887–906. [Google Scholar] [CrossRef]
- Niu, M.; Dai, Z.; Cheung, P.; Wang, Y. Intrinsic Gaussian process on unknown manifolds with probabilistic metrics. J. Mach. Learn. Res. 2023, 24, 1–42. [Google Scholar]
- Demšar, U.; Harris, P.; Brunsdon, C.; Fotheringham, A.S.; McLoone, S. Principal component analysis on spatial data: An overview. Ann. Assoc. Am. Geogr. 2013, 103, 106–128. [Google Scholar] [CrossRef]
- Erdélyi, J.; Kopáčik, A.; Kyrinovič, P. Spatial data analysis for deformation monitoring of bridge structures. Appl. Sci. 2020, 10, 8731. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, B.; Zhang, M. Estimation of knots in linear spline models. J. Am. Stat. Assoc. 2023, 118, 639–650. [Google Scholar] [CrossRef]
- Kim, K.R.; Dryden, I.L.; Le, H.; Severn, K.E. Smoothing splines on Riemannian manifolds, with applications to 3D shape space. J. R. Stat. Soc. Ser. B Stat. Methodol. 2021, 83, 108–132. [Google Scholar] [CrossRef]
- Mancinelli, C.; Puppo, E. Splines on Manifolds: A Survey. Comput. Aided Geom. Des. 2024, 112, 102349. [Google Scholar] [CrossRef]
- Irshad, M.R.; Aswathy, S.; Maya, R.; Nadarajah, S. New One-Parameter Over-Dispersed Discrete Distribution and Its Application to the Nonnegative Integer-Valued Autoregressive Model of Order One. Mathematics 2024, 12, 81. [Google Scholar] [CrossRef]
- Irshad, M.R.; Archana, K.; Al-Omari, A.I.; Maya, R.; Alomani, G. Extropy Based on Concomitants of Order Statistics in Farlie-Gumbel-Morgenstern Family for Random Variables Representing Past Life. Axioms 2023, 12, 792. [Google Scholar] [CrossRef]
- Amewou-Atisso, M.; Ghosal, S.; Ghosh, J.K.; Ramamoorthi, R. Posterior consistency for semi-parametric regression problems. Bernoulli 2003, 9, 291–312. [Google Scholar] [CrossRef]
- Athey, S.; Bickel, P.J.; Chen, A.; Imbens, G.W.; Pollmann, M. Semi-parametric estimation of treatment effects in randomised experiments. J. R. Stat. Soc. Ser. Stat. Methodol. 2023, 85, 1615–1638. [Google Scholar] [CrossRef]
- Zhao, Y.; Gijbels, I.; Van Keilegom, I. Parametric copula adjusted for non-and semiparametric regression. Ann. Stat. 2022, 50, 754–780. [Google Scholar] [CrossRef]
- Taupin, M.L. Semi-parametric estimation in the nonlinear structural errors-in-variables model. Ann. Stat. 2001, 29, 66–93. [Google Scholar] [CrossRef]
- Karapiperis, D.; Tzafilkou, K.; Tsoni, R.; Feretzakis, G.; Verykios, V.S. A Probabilistic Approach to Modeling Students’ Interactions in a Learning Management System for Facilitating Distance Learning. Information 2023, 14, 440. [Google Scholar] [CrossRef]
- Karapiperis, D.; Tjortjis, C.; Verykios, V.S. A Suite of Efficient Randomized Algorithms for Streaming Record Linkage. IEEE Trans. Knowl. Data Eng. 2024, 36, 2803–2813. [Google Scholar] [CrossRef]
- Abdelwahab, M.M.; Al-Karawi, K.A.; Semary, H.E. Integrating gene selection and deep learning for enhanced Autisms’ disease prediction: A comparative study using microarray data. AIMS Math. 2024, 9, 17827–17846. [Google Scholar] [CrossRef]
- Sang, P.; Wang, L.; Cao, J. Parametric functional principal component analysis. Biometrics 2017, 73, 802–810. [Google Scholar] [CrossRef]
- Happ, C.; Greven, S. Multivariate functional principal component analysis for data observed on different (dimensional) domains. J. Am. Stat. Assoc. 2018, 113, 649–659. [Google Scholar] [CrossRef]
- Zhang, H.; Gan, J. A Reproducing Kernel-Based Spatial Model in Poisson Regressions. Int. J. Biostat. 2012, 8, 28. [Google Scholar] [CrossRef]
- Niu, M.; Cheung, P.; Lin, L.; Dai, Z.; Lawrence, N.; Dunson, D. Intrinsic Gaussian processes on complex constrained domains. J. R. Stat. Soc. Ser. B 2019, 81, 603–627. [Google Scholar] [CrossRef]
- Steinwart, I.; Scovel, C. Mercer’s Theorem on General Domains: On the Interaction between Measures, Kernels, and RKHSs. Constr. Approx. 2012, 35, 363–417. [Google Scholar] [CrossRef]
- Mercer, J. Functions of positive and negative type, and their connection with the theory of integral equations. Proc. R. Soc. Lond. Ser. A 1909, 83, 69–70. [Google Scholar]
- De Vito, E.; Umanità, V.; Villa, S. An extension of Mercer theorem to matrix-valued measurable kernels. Appl. Comput. Harmon. Anal. 2013, 34, 339–351. [Google Scholar] [CrossRef]
- Ning, Y.; Liu, H. A general theory of hypothesis tests and confidence regions for sparse high dimensional models. Ann. Stat. 2017, 45, 158–195. [Google Scholar] [CrossRef]
- Belloni, A.; Chernozhukov, V.; Wang, L. Square-root lasso: Pivotal recovery of sparse signals via conic programming. Biometrika 2011, 98, 791–806. [Google Scholar] [CrossRef]
- Knight, K.; Fu, W. Asymptotics for Lasso-Type Estimators. Ann. Stat. 2000, 28, 1356–1378. [Google Scholar]
- Liu, W. Gaussian graphical model estimation with false discovery rate control. Ann. Stat. 2013, 41, 2948–2978. [Google Scholar] [CrossRef]
- Jin, S.; Madariaga, R.; Virieux, J.; Lambar, G. Two-dimensional asymptotic iterative elastic inversion. Geophys. J. R. Astron. Soc. 2010, 108, 575–588. [Google Scholar] [CrossRef]
- Moon, T.K. The expectation-maximization algorithm. IEEE Signal Process. Mag. 1996, 13, 47–60. [Google Scholar] [CrossRef]
Definite Form | Absolute Error (std) | Relative Error (std) | |
---|---|---|---|
n | 67.93% (8.69%) | 80.30% (10.13%) | |
61.92% (9.46%) | 81.61% (7.49%) | ||
55.02% (12.10%) | 82.71% (8.46%) | ||
56.33% (8.30%) | 85.38% (4.98%) | ||
58.61% (8.99%) | 71.77% (9.11%) | ||
58.15% (9.52%) | 71.77% (8.12%) | ||
61.56% (8.23%) | 80.32% (7.80%) | ||
60.28% (8.87%) | 81.42% (6.27%) | ||
57.09% (8.62%) | 79.97% (5.93%) | ||
55.98% (8.47%) | 73.74% (11.03%) | ||
54.65% (6.85%) | 70.58% (8.93%) | ||
52.64% (6.35%) | 69.82% (9.15%) | ||
58.96% (9.23%) | 74.50% (10.21%) | ||
58.96% (9.39%) | 74.11% (7.49%) | ||
57.67% (7.71%) | 70.20% (8.47%) | ||
57.15% (15.21%) | 73.80% (7.04%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Lu, Y.; Su, Y.; Liu, T.; Qi, Y.; Xie, W. Intrinsic Functional Partially Linear Poisson Regression Model for Count Data. Axioms 2024, 13, 795. https://doi.org/10.3390/axioms13110795
Xu J, Lu Y, Su Y, Liu T, Qi Y, Xie W. Intrinsic Functional Partially Linear Poisson Regression Model for Count Data. Axioms. 2024; 13(11):795. https://doi.org/10.3390/axioms13110795
Chicago/Turabian StyleXu, Jiaqi, Yu Lu, Yuanshen Su, Tao Liu, Yunfei Qi, and Wu Xie. 2024. "Intrinsic Functional Partially Linear Poisson Regression Model for Count Data" Axioms 13, no. 11: 795. https://doi.org/10.3390/axioms13110795
APA StyleXu, J., Lu, Y., Su, Y., Liu, T., Qi, Y., & Xie, W. (2024). Intrinsic Functional Partially Linear Poisson Regression Model for Count Data. Axioms, 13(11), 795. https://doi.org/10.3390/axioms13110795