Modified Sweeping Surfaces in Euclidean 3-Space
Abstract
:1. Introduction
2. Preliminaries
- M is a developable surface if and only if everywhere.
- M is a minimal surface if and only if everywhere.
- M is a Weingarten-type surface if and only if everywhere.
3. Modified Sweeping Surfaces Using the MOFs
3.1. Modified Sweeping Surfaces of the MOF with Non-Vanishing Curvature
3.2. Modified Sweeping Surfaces of the MOF with Non-Vanishing Torsion
4. Conclusions
- Deriving criteria for each type of modified sweeping surface with non-vanishing curvature and non-vanishing torsion to be minimal, developable, or Weingarten surfaces.
- Conducting a comprehensive analysis of the coordinate curves of these modified sweeping surfaces to determine criteria for geodesic, asymptotic, and curvature lines.
- Providing examples of the modified sweeping surfaces along with illustrated graphics.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flok, F. Two moving coordinate frames for sweeping along a 3D trajectory. Comput. Aided Geom. Des. 1986, 3, 217–229. [Google Scholar] [CrossRef]
- Wang, W.; Joe, B. Robust computation of the rotation minimizing frame for sweep surface modeling. Comput. Aided Geom. Des. 1997, 29, 379–391. [Google Scholar] [CrossRef]
- Xu, Z.; Feng, R.; Sun, J.G. Analytic and algebraic properties of canal surfaces. J. Comput. Appl. Math. 2006, 195, 220–228. [Google Scholar] [CrossRef]
- Ro, J.S.; Yoon, D.W. Tubes of Weingarten types in Euclidean 3-space. J. Chungcheong Math. Soc. 2009, 22, 359–366. [Google Scholar] [CrossRef]
- Abdel-Baky, R.A. Developable surfaces through sweeping surfaces. Bull. Iran. Math. Soc. 2019, 45, 951–963. [Google Scholar] [CrossRef]
- Moraffeh, F.; Abdel-Baky, R.A.; Alluhaibi, N. Sweeping surfaces with Darboux frame in Euclidean 3-space. Aust. J. Math. Anal. Appl. 2021, 18, 1–10. [Google Scholar]
- Li, Y.; Güler, E. Right Conoids Demonstrating a Time-like Axis within Minkowski Four-Dimensional Space. Mathematics 2024, 12, 2421. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E.; Toda, M. Family of right conoid hypersurfaces with light-like axis in Minkowski four-space. AIMS Math. 2024, 9, 18732–18745. [Google Scholar] [CrossRef]
- Bruce, J.W.; Giblin, P.J. Curves and Singularities; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar] [CrossRef]
- Köseoğlu, G.; Bilici, M. Involutive sweeping surfaces with Frenet frame in Euclidean 3-space. Heliyon 2023, 9, e18822. [Google Scholar] [CrossRef]
- Maekawa, T.; Patrikalakis, N.M.; Sakkalis, T.; Yu, G. Analysis and applications of pipe surfaces. Comput. Aided Geom. Des. 1998, 15, 437–458. [Google Scholar] [CrossRef]
- Blaga, P.A. On tubular surfaces in computer graphics. Stud. Univ. Babeş-Bolyai Inform. 2005, 50, 81–90. [Google Scholar]
- Kızıltuğ, S.; Kaya, S.; Tarakçı, Ö. Tube surfaces with type-2 Bishop frame of Weingarten types in E3. Int. J. Math. Anal. 2013, 7, 9–18. [Google Scholar] [CrossRef]
- Moraffeh, F.; Abdel-Baky, R.; Alluhall, N. Spacelike sweeping surfaces and singularities in Minkowski 3-space. Math. Probl. Eng. 2021, 3, 5130941. [Google Scholar] [CrossRef]
- Li, Y.; Bouleryah, M.L.H.; Ali, A. On Convergence of Toeplitz Quantization of the Sphere. Mathematics 2024, 12, 3565. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Aziz, H.; Serry, H.; El-Adawy, F.; Saad, M. Geometric visualization of evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space. AIMS Math. 2024, 9, 25619–25635. [Google Scholar] [CrossRef]
- Li, Y.; Turki, N.; Deshmukh, S.; Belova, O. Euclidean hypersurfaces isometric to spheres. AIMS Math. 2024, 9, 28306–28319. [Google Scholar] [CrossRef]
- Sasai, T. The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations. Tohoku Math. J. 1984, 36, 17–24. [Google Scholar] [CrossRef]
- Karacan, M.K.; Bükçü, B. On the modified orthogonal frame with curvature and torsion in 3-space. Math. Sci. Appl. E-Notes 2016, 4, 184–188. [Google Scholar]
- Lone, M.S.; Hasan, E.S.; Karacan, M.K.; Bükçü, B. On some curves with modified orthogonal frame in Euclidean 3-space. Iran J. Sci. Technol. Trans. A Sci. 2019, 43, 1905–1916. [Google Scholar] [CrossRef]
- Eren, K.; Kösal, H.H. Evolution of space curves and the special ruled surfaces with modified orthogonal frame. AIMS Math. 2020, 5, 2027–2039. [Google Scholar] [CrossRef]
- Akyiğit, M.; Eren, K.; Kösal, H.H. Tubular surfaces with modified orthogonal frame. Honam Math. J. 2021, 43, 453–463. [Google Scholar] [CrossRef]
- Eren, K. New representation of Hasimoto surfaces with the modified orthogonal frame. Konuralp J. Math. 2022, 10, 69–72. [Google Scholar]
- Eren, K. A study of the evolution of space curves with modified orthogonal frame in Euclidean 3-space. App. Math. E-Notes 2022, 22, 281–286. [Google Scholar]
- Eren, K.; Ersoy, S. On characterization of Smarandache curves constructed by modified orthogonal frame. Math. Sci. Appl. E-Notes 2024, 12, 101–112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Eren, K.; Ersoy, S.; Savić, A. Modified Sweeping Surfaces in Euclidean 3-Space. Axioms 2024, 13, 800. https://doi.org/10.3390/axioms13110800
Li Y, Eren K, Ersoy S, Savić A. Modified Sweeping Surfaces in Euclidean 3-Space. Axioms. 2024; 13(11):800. https://doi.org/10.3390/axioms13110800
Chicago/Turabian StyleLi, Yanlin, Kemal Eren, Soley Ersoy, and Ana Savić. 2024. "Modified Sweeping Surfaces in Euclidean 3-Space" Axioms 13, no. 11: 800. https://doi.org/10.3390/axioms13110800
APA StyleLi, Y., Eren, K., Ersoy, S., & Savić, A. (2024). Modified Sweeping Surfaces in Euclidean 3-Space. Axioms, 13(11), 800. https://doi.org/10.3390/axioms13110800