One Class of Stackelberg Linear–Quadratic Differential Games with Cheap Control of a Leader: Asymptotic Analysis of an Open-Loop Solution
Abstract
:1. Introduction
- denotes the n-dimensional real Euclidean space;
- denotes the Euclidean norm either of a vector () or of a matrix ();
- The superscript “” denotes the transposition either of a vector () or of a matrix ();
- denotes the identity matrix of dimension n;
- , where , ,..., , denotes the column block-vector of the dimension with the upper block , the next block , and so on, and the lower block ;
- denotes the real part of a complex number .
2. Problem Statement
2.1. Initial Game Formulation
- (A1) For any , the matrix has full column rank r.
- (A2) For any , the matrices , are positive semi-definite.
- (A3) For any , the matrices , , and are positive definite.
2.2. Transformation of the Game (1)–(3)
- (A4).
- (A5) The matrix-valued functions , , , and are continuously differentiable in the interval .
- (A6) The matrix-valued functions and are twice continuously differentiable in the interval .
2.3. Main Objectives of the Paper
- (i)
- (ii)
- (iii)
3. -Dependent Solvability Conditions of the Stackelberg Game (9)–(11)
4. Asymptotic Solution to the Boundary-Value Problem (17)
4.1. Transformation of Problem (17)
4.2. First-Order Formal Asymptotic Solution to Problems (26) and (27)
4.2.1. Obtaining the Boundary Corrections , , and
4.2.2. Obtaining the Boundary Corrections , , and
4.2.3. Obtaining the Outer Solution Terms , , , , ,
4.2.4. Control-Theoretic Interpretation of the Boundary-Value Problem (39) and (37)
4.2.5. Obtaining the Boundary Corrections , and ,
4.2.6. Obtaining the Boundary Corrections , , and
4.2.7. Obtaining the Boundary Corrections , , and
4.2.8. Obtaining the Outer Solution Terms , , , , ,
4.2.9. Obtaining the Boundary Corrections , and ,
4.3. Justification of the First-Order Asymptotic Solution to Problems (26) and (27)
5. Main Results
5.1. Asymptotic Expansion of the Stackelberg Solution to the Game (9)–(11)
5.2. Asymptotic Expansion of the Stackelberg Optimal Values of the Cost Functionals in the Game (9)–(11)
5.3. Asymptotically Suboptimal Stackelberg Solution to the Game (9)–(11)
6. Example
6.1. Illustration of Lemma 1
6.2. Illustration of Theorem 1
6.3. Illustration of Theorem 2
6.4. Illustration of Theorem 3
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Malley, R.E. Cheap control, singular arcs, and singular perturbations. In Optimal Control Theory and Its Applications; Kirby, B.J., Ed.; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1974; Volume 106. [Google Scholar]
- Bell, D.J.; Jacobson, D.H. Singular Optimal Control Problems; Academic Press: Cambridge, MA, USA, 1975. [Google Scholar]
- O’Malley, R.E. The singular perturbation approach to singular arcs. In International Conference on Differential Equations; Antosiewicz, H.A., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 1975; pp. 595–611. [Google Scholar]
- O’Malley, R.E.; Jameson, A. Singular perturbations and singular arcs, I. IEEE Trans. Automat. Control 1975, 20, 218–226. [Google Scholar] [CrossRef]
- O’Malley, R.E. A more direct solution of the nearly singular linear regulator problem. SIAM J. Control Optim. 1976, 14, 1063–1077. [Google Scholar] [CrossRef]
- O’Malley, R.E.; Jameson, A. Singular perturbations and singular arcs, II. IEEE Trans. Automat. Control 1977, 22, 328–337. [Google Scholar] [CrossRef]
- Kurina, G.A. A degenerate optimal control problem and singular perturbations. Soviet Math. Dokl. 1977, 18, 1452–1456. [Google Scholar]
- Sannuti, P.; Wason, H.S. Multiple time-scale decomposition in cheap control problems—Singular control. IEEE Trans. Automat. Control 1985, 30, 633–644. [Google Scholar] [CrossRef]
- Saberi, A.; Sannuti, P. Cheap and singular controls for linear quadratic regulators. IEEE Trans. Automat. Control 1987, 32, 208–219. [Google Scholar] [CrossRef]
- Smetannikova, E.N.; Sobolev, V.A. Regularization of cheap periodic control problems. Automat. Remote Control 2005, 66, 903–916. [Google Scholar] [CrossRef]
- Glizer, V.Y. Stochastic singular optimal control problem with state delays: Regularization, singular perturbation, and minimizing sequence. SIAM J. Control Optim. 2012, 50, 2862–2888. [Google Scholar] [CrossRef]
- Glizer, V.Y. Saddle-point equilibrium sequence in one class of singular infinite horizon zero-sum linear-quadratic differential games with state delays. Optimization 2019, 68, 349–384. [Google Scholar] [CrossRef]
- Shinar, J.; Glizer, V.Y.; Turetsky, V. Solution of a singular zero-sum linear-quadratic differential game by regularization. Int. Game Theory Rev. 2014, 16, 1–32. [Google Scholar] [CrossRef]
- Glizer, V.Y.; Kelis, O. Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems: Regularization Approach; Birkhauser: Basel, Switzerland, 2022. [Google Scholar]
- Kwakernaak, H.; Sivan, R. The maximally achievable accuracy of linear optimal regulators and linear optimal filters. IEEE Trans. Autom. Control 1972, 17, 79–86. [Google Scholar] [CrossRef]
- Francis, B. The optimal linear-quadratic time-invariant regulator with cheap control. IEEE Trans. Autom. Control 1979, 24, 616–621. [Google Scholar] [CrossRef]
- Saberi, A.; Sannuti, P. Cheap control problem of a linear uniform rank system: Design by composite control. Automatica 1986, 22, 757–759. [Google Scholar] [CrossRef]
- Lee, J.T.; Bien, Z.N. A quadratic regulator with cheap control for a class of nonlinear systems. J. Optim. Theory Appl. 1987, 55, 289–302. [Google Scholar] [CrossRef]
- Braslavsky, J.H.; Seron, M.M.; Mayne, D.Q.; Kokotovic, P.V. Limiting performance of optimal linear filters. Automatica 1999, 35, 189–199. [Google Scholar] [CrossRef]
- Seron, M.M.; Braslavsky, J.H.; Kokotovic, P.V.; Mayne, D.Q. Feedback limitations in nonlinear systems: From Bode integrals to cheap control. IEEE Trans. Autom. Control 1999, 44, 829–833. [Google Scholar] [CrossRef]
- Glizer, V.Y.; Kelis, O. Asymptotic properties of an infinite horizon partial cheap control problem for linear systems with known disturbances. Numer. Algebra Control Optim. 2018, 8, 211–235. [Google Scholar] [CrossRef]
- Moylan, P.J.; Anderson, B.D.O. Nonlinear regulator theory and an inverse optimal control problem. IEEE Trans. Autom. Control 1973, 18, 460–465. [Google Scholar] [CrossRef]
- Young, K.D.; Kokotovic, P.V.; Utkin, V.I. A singular perturbation analysis of high-gain feedback systems. IEEE Trans. Autom. Control 1977, 22, 931–938. [Google Scholar] [CrossRef]
- Kokotovic, P.V.; Khalil, H.K.; O’Reilly, J. Singular Perturbation Methods in Control: Analysis and Design; Academic Press: London, UK, 1986. [Google Scholar]
- Turetsky, V.; Glizer, V.Y. Robust solution of a time-variable interception problem: A cheap control approach. Int. Game Theory Rev. 2007, 9, 637–655. [Google Scholar] [CrossRef]
- Turetsky, V.; Glizer, V.Y.; Shinar, J. Robust trajectory tracking: Differential game/cheap control approach. Int. J. Systems Sci. 2014, 45, 2260–2274. [Google Scholar] [CrossRef]
- Turetsky, V. Robust route realization by linear-quadratic tracking. J. Optim. Theory Appl. 2016, 170, 977–992. [Google Scholar] [CrossRef]
- Starr, A.W.; Ho, Y.C. Nonzero-sum differential games. J. Optim. Theory Appl. 1969, 3, 184–206. [Google Scholar] [CrossRef]
- Turetsky, V.; Shinar, J. Missile guidance laws based on pursuit—Evasion game formulations. Automatica 2003, 39, 607–618. [Google Scholar] [CrossRef]
- Turetsky, V. Upper bounds of the pursuer control based on a linear-quadratic differential game. J. Optim. Theory Appl. 2004, 121, 163–191. [Google Scholar] [CrossRef]
- Turetsky, V.; Glizer, V.Y. Cheap control in a non-scalarizable linear-quadratic pursuit-evasion game: Asymptotic analysis. Axioms 2022, 11, 214. [Google Scholar] [CrossRef]
- Glizer, V.Y. Asymptotic solution of zero-sum linear-quadratic differential game with cheap control for the minimizer. NoDEA Nonlinear Diff. Equ. Appl. 2000, 7, 231–258. [Google Scholar] [CrossRef]
- Glizer, V.Y. Nash equilibrium sequence in a singular two-person linear-quadratic differential game. Axioms 2021, 10, 132. [Google Scholar] [CrossRef]
- Hu, Y.; Øksendal, B.; Sulem, A. Singular mean-field control games. Stoch. Anal. Appl. 2017, 35, 823–851. [Google Scholar] [CrossRef]
- Hamelin, F.M.; Lewis, M.A. A differential game theoretical analysis of mechanistic models for territoriality. J. Math. Biol. 2010, 61, 665–694. [Google Scholar] [CrossRef]
- Petersen, I.R. Linear-quadratic differential games with cheap control. Syst. Control Lett. 1986, 8, 181–188. [Google Scholar] [CrossRef]
- Glizer, V.Y. Nash equilibrium in a singular infinite horizon two-person linear-quadratic differential game. Pure Appl. Funct Anal. 2022, 7, 1657–1698. [Google Scholar]
- Glizer, V.Y. Solution of one class of singular two-person Nash equilibrium games with state and control delays: Regularization approach. Appl. Set-Valued Anal. Optim. 2023, 5, 401–438. [Google Scholar]
- Basar, T.; Olsder, G.J. Dynamic Noncooperative Game Theory; Academic Press: London, UK, 1992. [Google Scholar]
- He, X.; Prasad, A.; Sethi, S.P.; Gutierrez, G.J. A survey of Stackelberg differential game models in supply and marketing channels. J. Syst. Sci. Syst. Eng. 2007, 16, 385–413. [Google Scholar] [CrossRef]
- Colombo, L.; Labrecciosa, P. Stackelberg versus Cournot: A differential game approach. J. Econom. Dynam. Control 2019, 101, 239–261. [Google Scholar] [CrossRef]
- Kańska, K.; Wiszniewska-Matyszkiel, A. Dynamic Stackelberg duopoly with sticky prices and a myopic follower. Oper. Res. 2022, 22, 4221–4252. [Google Scholar] [CrossRef]
- Solis, C.U.; Clempner, J.B. Ship differential game approach for multiple players: Stackelberg security games. Optim. Control Appl. Meth. 2020, 41, 312–326. [Google Scholar] [CrossRef]
- Wan, W.; Peng, Y.; Cioffi, J.M.; Glover, K.T. A Stackelberg differential game framework for enhancing energy efficiency in satellite communication systems. J. Mach. Intell. Data Sci. 2024, 5, 65–73. [Google Scholar] [CrossRef]
- Ming, Z.; Zhang, H.; Li, Y.; Liang, Y. Mixed H2/H∞ control for nonlinear closed-loop Stackelberg games with application to power systems. IEEE Trans. Autom. Sci. Eng. 2024, 21, 69–77. [Google Scholar] [CrossRef]
- Sannuti, P. Direct singular perturbation analysis of high-gain and cheap control problems. Automatica 1983, 19, 41–51. [Google Scholar] [CrossRef]
- Kokotovic, P.V. Applications of singular perturbation techniques to control problems. SIAM Rev. 1984, 26, 501–550. [Google Scholar] [CrossRef]
- Popescu, D.C.; Gajic, Z. Singular perturbation analysis of cheap control problem for sampled data systems. IEEE Trans. Autom. Control 1999, 44, 2209–2214. [Google Scholar] [CrossRef]
- Hoai, N.T. Asymptotic solution of a singularly perturbed linear-quadratic problem in critical case with cheap control. J. Optim. Theory Appl. 2017, 175, 324–340. [Google Scholar] [CrossRef]
- Salman, M.A.; Cruz, J.B. Well posedness of linear closed Stackelberg strategies for singularly perturbed systems. J. Franklin Inst. 1979, 308, 25–37. [Google Scholar] [CrossRef]
- Khalil, H.K.; Medanic, J.V. Closed-loop Stackelberg strategies for singularly perturbed linear quadratic problems. IEEE Trans. Autom. Control 1980, 25, 66–71. [Google Scholar] [CrossRef]
- Salman, M.A.; Cruz, J.B. Team-optimal closed-loop Stackelberg strategies for systems with slow and fast modest. Internat. J. Control 1983, 37, 1401–1416. [Google Scholar] [CrossRef]
- Mizukami, K.; Xu, H. Near-optimal incentive Stackelberg strategies for singularly perturbed systems. IFAC Proc. Vol. 1990, 23, 427–432. [Google Scholar] [CrossRef]
- Mizukami, K.; Suzumura, F. Closed-loop Stackelberg strategies for singularly perturbed systems: The recursive approach. Int. J. Syst. Sci. 1993, 24, 887–900. [Google Scholar] [CrossRef]
- Mukaidani, H. Efficient numerical procedures for solving closed-Loop Stackelberg strategies with small singular perturbation parameter. Appl. Math. Comput. 2007, 188, 1173–1183. [Google Scholar] [CrossRef]
- Krylov, I.A.; Chernous’ko, F.L. On the method of successive approximations for solution of optimal control problems. J. Comp. Math. Math. Phys. 1962, 2, 1132–1139. (In Russian) [Google Scholar] [CrossRef]
- Kolmanovskii, V.B.; Maizenberg, T.L. Optimal control of stochastic systems with aftereffect. Automat. Remote Control 1973, 34, 39–52. [Google Scholar]
- Chernous’ko, F.L.; Kolmanovskii, V.B. Numerical and approximate methods of optimal control. J. Sov. Math. 1979, 12, 310–353. [Google Scholar] [CrossRef]
- Jajarmi1, A.; Pariz, N.; Kamyad, A.V.; Effati, S. A novel modal series representation approach to solve a class of nonlinear optimal control problems. Int. J. Innov. Inf. Control 2011, 7, 1413–1425. [Google Scholar]
- Campana, F.C.; Borzì, A. On the SQH method for solving differential Nash games. J. Dyn. Control Syst. 2022, 28, 739–755. [Google Scholar] [CrossRef]
- Krastanov, M.I.; Rozenov, R.; Stefanov, B.K. On a constrained infinite-time horizon linear quadratic game. Dyn. Games Appl. 2023, 13, 843–858. [Google Scholar] [CrossRef]
- Megahed, A.A.; Hemeda, A.A.; Madkour, H.F.A. Approximate solutions for Nash differential games. J. Math. 2023, 2023, 7374882. [Google Scholar] [CrossRef]
- Glizer, V.Y.; Turetsky, V. Approximate solution of a zero-sum linear-quadratic differential game by the auxiliary parameter method: Analytical/numerical study. Optimization 2024, 1–41. [Google Scholar] [CrossRef]
- Dockner, E.J.; Jorgensen, S.; Van Long, N.; Sorger, G. Differential Games in Economics and Management Science; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bressan, A. Lecture Notes on Differential Games. 2010. Available online: https://www.researchgate.net/publication/228767190 (accessed on 1 December 2010).
- Vasil’eva, A.B.; Butuzov, V.F.; Kalachev, L.V. The Boundary Function Method for Singular Perturbation Problems; SIAM Books: Philadelphia, PA, USA, 1995. [Google Scholar]
- Esipova, V.A. The asymptotic behavior of the solution of the general boundary value problem for singularly perturbed systems of ordinary differential equations of conditionally stable type. Differ. Equations 1975, 11, 1457–1465. [Google Scholar]
- Ioffe, A.D.; Tikhomirov, V.M. Theory of Extremal Problems; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Bryson, A.; Ho, Y. Applied Optimal Control; Hemisphere: New York, NY, USA, 1975. [Google Scholar]
- Sibuya, Y. Some global properties of matrices of functions of one variable. Math. Annalen 1965, 161, 67–77. [Google Scholar] [CrossRef]
- Jajarmi, A.; Hajipour, M. An efficient finite difference method for the time-delay optimal control problems with time-varying delay. Asian J. Control 2017, 19, 554–563. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glizer, V.Y.; Turetsky, V. One Class of Stackelberg Linear–Quadratic Differential Games with Cheap Control of a Leader: Asymptotic Analysis of an Open-Loop Solution. Axioms 2024, 13, 801. https://doi.org/10.3390/axioms13110801
Glizer VY, Turetsky V. One Class of Stackelberg Linear–Quadratic Differential Games with Cheap Control of a Leader: Asymptotic Analysis of an Open-Loop Solution. Axioms. 2024; 13(11):801. https://doi.org/10.3390/axioms13110801
Chicago/Turabian StyleGlizer, Valery Y., and Vladimir Turetsky. 2024. "One Class of Stackelberg Linear–Quadratic Differential Games with Cheap Control of a Leader: Asymptotic Analysis of an Open-Loop Solution" Axioms 13, no. 11: 801. https://doi.org/10.3390/axioms13110801
APA StyleGlizer, V. Y., & Turetsky, V. (2024). One Class of Stackelberg Linear–Quadratic Differential Games with Cheap Control of a Leader: Asymptotic Analysis of an Open-Loop Solution. Axioms, 13(11), 801. https://doi.org/10.3390/axioms13110801