Four Families of Summation Formulas for 4F3(1) with Application
Abstract
:1. Introduction and Preliminaries
- (i)
- It diverges for all , if .
- (ii)
- It converges for all , if .
- (iii)
- It converges for and diverges for if .
- (iv)
- It converges absolutely for if and .
- (v)
- It converges conditionally for if and .
- (vi)
- It diverges for if and
2. Main Summation Formulae
- (i)
- (ii)
- (iii)
3. Application
4. Concluding Remarks and Observations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: New York, NY, USA, 1971. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935; Reprinted by Stechert-Hafner, New York, NY, USA, 1964. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: London, UK, 1966. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Gauss, C.F. Disquisitiones Generales Circa Seriem Infinitam; Cambridge University Press: Cambridge, UK, 2011; Volume 2, Reprinted in Carl Friedrich Gauss Werke (12 Volumes), (Göttingen), Volume 3, pp. 123–162 (see also pp. 197–202 and pp. 207–230), Göttingen, 1870–1933. [Google Scholar]
- Qureshi, M.I.; Shah, T.U.R.; Choi, J.; Bhat, A.H. Three general double-series identities and associated deduction formulas and fractional calculus. Fractal Fract. 2023, 7, 700. [Google Scholar] [CrossRef]
- Qureshi, M.I.; Choi, J.; Baboo, M.S. Certain identities involving the general Kampé de Fériet function and Srivastava’s general triple hypergeometric series. Symmetry 2022, 14, 2502. [Google Scholar] [CrossRef]
- Choi, J.; Quine, J.R. E.W. Barnes’ approach of the multiple Gamma functions. J. Korean Math. Soc. 1992, 29, 127–140. [Google Scholar]
- Choi, J.; Srivastava, H.M. A note on a multiplication formula for the multiple Gamma function Γn. Ital. J. Pure Appl. Math. 2008, 23, 179–188. [Google Scholar]
- Carlson, B.C. Some extensions of Lardner’s relations between 0F3 and Bessel functions. SIAM J. Math. Anal. 1970, 1, 232–242. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K. Generalizations of two summation formulas for the generalized hypergeometric function of higher order due to Exton. Commun. Korean Math. Soc. 2010, 25, 385–389. [Google Scholar] [CrossRef]
- Exton, H. Some new summation formulae for the generalized hypergeometric function of higher order. J. Comput. Appl. Math. 1997, 79, 183–187. [Google Scholar] [CrossRef]
- Henrici, P. A triple product theorem for hypergeometric series. SIAM J. Math. Anal. 1987, 18, 1513–1518. [Google Scholar] [CrossRef]
- Karlsson, P.W.; Srivastava, H.M. A note on Henrici’s triple product theorem. Proc. Amer. Math. Soc. 1990, 110, 85–88. [Google Scholar] [CrossRef]
- Lardner, T.J. Relations between 0F3 and Bessel functions. SIAM Rev. 1969, 11, 69–72. [Google Scholar] [CrossRef]
- Osler, T.J. An identity for simplifying certain generalized hypergeometric functions. Math. Comp. 1975, 29, 888–893. [Google Scholar] [CrossRef]
- Srivastava, H.M. A note on certain identities involving generalized hypergeometric series. Indag. Math. 1979, 82, 191–201. [Google Scholar] [CrossRef]
- Srivastava, H.M. A certain family of sub-exponential series. Internat. J. Math. Ed. Sci. Tech. 1994, 25, 211–216. [Google Scholar] [CrossRef]
- Tremblay, R.; Fugère, B.J. Products of two restricted hypergeometric functions. J. Math. Anal. Appl. 1996, 198, 844–852. [Google Scholar] [CrossRef]
- Rakha, M.A.; Rathie, A.K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications. Integral Transform. Spec. Func. 2011, 22, 823–840. [Google Scholar] [CrossRef]
- Apostol, T.M. Mathematical Analysis, 2nd ed.; Addison-Wesley Publishing Company: Menlo Park, CA, USA, 1974. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. More Special Functions. In Integrals and Series; Nauka: Moscow, Russia, 1986; Volume 3. (In Russian) [Google Scholar]
- Brychkov, Y.A. Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas; CRC Press, Taylor & Fancis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA, 1953; Volume I. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, B.R.S.; Rathie, A.K.; Choi, J. Four Families of Summation Formulas for 4F3(1) with Application. Axioms 2024, 13, 164. https://doi.org/10.3390/axioms13030164
Kumar BRS, Rathie AK, Choi J. Four Families of Summation Formulas for 4F3(1) with Application. Axioms. 2024; 13(3):164. https://doi.org/10.3390/axioms13030164
Chicago/Turabian StyleKumar, Belakavadi Radhakrishna Srivatsa, Arjun K. Rathie, and Junesang Choi. 2024. "Four Families of Summation Formulas for 4F3(1) with Application" Axioms 13, no. 3: 164. https://doi.org/10.3390/axioms13030164
APA StyleKumar, B. R. S., Rathie, A. K., & Choi, J. (2024). Four Families of Summation Formulas for 4F3(1) with Application. Axioms, 13(3), 164. https://doi.org/10.3390/axioms13030164