Comparing the Performance of Two Butcher-Based Block Hybrid Algorithms for the Solution of Initial Value Problems
Abstract
:1. Introduction
2. Methodology
Derivation of Multi-Step Collocation Methods
3. Convergence Analysis
3.1. Algorithm for
3.2. Algorithm for
4. Numerical Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shampine, L.F. Ill-conditioned matrices and the integration of stiff ODEs. J. Comput. Appl. Math. 1993, 48, 279–292. [Google Scholar] [CrossRef]
- Trefethen, L.N.; Bau, D., III. Numerical Linear Algebra; SIAM: Philadelphia, PA, USA, 1997. [Google Scholar]
- Butcher, J.C. A multistep generalization of Runge-Kutta method with four or five stages. J. Ass. Comput. Mach. 1967, 14, 84–99. [Google Scholar] [CrossRef]
- Butcher, J.C. Numerical methods for ordinary differential equations in the 20th century. J. Comput. Appl. Math. 2000, 125, 1–29. [Google Scholar] [CrossRef]
- Butcher, J.C. Numerical Methods for Ordinary Differential Equations; John Wiley and Sons Ltd.: Oxford, UK, 2016. [Google Scholar]
- Akinola, R.O.; Ajibade, K.J. A proof of the non singularity of the D matrix used in deriving the two-step Butcher’s hybrid scheme for the solution of initial value problems. J. Appl. Math. Phys. 2021, 9, 3177–3201. [Google Scholar] [CrossRef]
- Akinola, R.O.; Shokri, A.; Yao, S.-W.; Kutchin, S.Y. Circumventing ill-conditioning arising from using linear multistep methods in approximating the solution of initial value problems. Mathematics 2022, 10, 2910. [Google Scholar] [CrossRef]
- Sirisena, U.W.; Kumleng, G.M.; Yahaya, Y.A. A new Butcher type two-step block hybrid multistep method for accurate and efficient parallel solution of ordinary differential equations. Abacus Math. Ser. 2004, 31, 1–7. [Google Scholar]
- Golub, G.H.; Wilkinson, J.H. Ill-conditioned eigensystems and the computation of the Jordan canonical form. SIAM Rev. 1976, 18, 578–619. [Google Scholar] [CrossRef]
- Peters, G.; Wilkinson, J.H. Inverse iteration, ill conditioned equations and Newton’s method. J. SIAM Rev. 1979, 21, 339–360. [Google Scholar] [CrossRef]
- Farooq, M.; Salhi, A. Improving the solvability of Ill-conditioned systems of linear equations by reducing the condition number of their matrices. J. Korean Math. Soc. 2011, 48, 939–952. [Google Scholar] [CrossRef]
- Douglas, C.C.; Lee, L.; Yeung, M. On solving ill conditioned linear systems. Procedia Comput. Sci. 2016, 80, 941–950. [Google Scholar] [CrossRef]
- Demmel, J.W. Applied Numerical Linear Algebra; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1997. [Google Scholar]
- Akram, G.; Elahi, Z.; Siddiqi, S.S. Use of Laguerre Polynomials for Solving System of Linear Differential Equations. Appl. Comput. Math. 2022, 21, 137–146. [Google Scholar]
- Khankishiyev, Z.F. Solution of one problem for a loaded differential equation by the method of finite differences. Appl. Comput. Math. 2022, 21, 147–157. [Google Scholar]
- Juraev, D.A.; Shokri, A.; Marian, D. Solution of the ill-posed Cauchy problem for systems of elliptic type of the first order. Fractal Fract. 2022, 6, 358. [Google Scholar] [CrossRef]
- Adee, S.O.; Atabo, V.O. Improved two-point block backward differentiation formulae for solving first order stiff initial value problems of ordinary differential equations. Niger. Ann. Pure Appl. Sci. 2020, 3, 200–209. [Google Scholar] [CrossRef]
- Antczak, T.; Arana-Jimenez, M. Optimality and duality results for new classes of nonconvex quasidifferentiable vector optimization problems. Appl. Comput. Math. 2022, 21, 21–34. [Google Scholar]
- Qi, F. Necessary and sufficient conditions for a difference defined by four derivatives of a function containing trigamma function to be completely monotonic. Appl. Comput. Math. 2022, 21, 61–70. [Google Scholar]
- Iskandarov, S.; Komartsova, E. On the influence of integral perturbations on the boundedness of solutions of a fourth-order linear differential equation. TWMS J. Pure Appl. Math. 2022, 13, 3–9. [Google Scholar]
- Mansour, M.A.; Lahrache, J.; El Ayoubi, A.; El Bekkali, A. The stability of parametric Cauchy problem of initial-value ordinary differential equation revisited. J. Appl. Numer. Optim. 2023, 5, 111–124. [Google Scholar]
- Ren, J.; Bai, L.; Zhai, C. A decreasing operator method for a fractional initial value problem on finite interval. J. Nonlinear Funct. Anal. 2023, 2023, 35. [Google Scholar]
- Hamidov, S.I. Optimal trajectories in reproduction models of economic dynamics. TWMS J. Pure Appl. Math. 2022, 13, 16–24. [Google Scholar]
- Akbay, A.; Turgay, N.; Ergüt, M. On Space-like Generalized Constant Ratio Hypersufaces in Minkowski Spaces. TWMS J. Pure Appl. Math. 2022, 13, 25–37. [Google Scholar]
- Juraev, D.A.; Shokri, A.; Marian, D. Regularized solution of the Cauchy problem in an unbounded domain. Symmetry 2022, 14, 1682. [Google Scholar] [CrossRef]
- Onumanyi, P.; Awoyemi, D.O.; Jator, S.N.; Sirisena, U.W. New Linear Multistep Methods with Continuous Coefficients for First Order Initial Value Problems. J. Niger. Math. Soc. 1994, 13, 37–51. [Google Scholar]
- Keller, H.B. Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. In Applications of Bifurcation Theory; Rabinowitz, P., Ed.; Academic Press: New York, NY, USA, 1997; pp. 359–384. [Google Scholar]
- Spence, A.; Poulton, C. Photonic band structure calculations using nonlinear eigenvalue techniques. J. Comput. Phys. 2005, 204, 65–81. [Google Scholar] [CrossRef]
- Akinola, R.O.; Freitag, M.A.; Spence, A. A method for the computation of Jordan blocks in parameter-dependent matrices. IMA J. Numer. Anal. 2014, 34, 955–976. [Google Scholar] [CrossRef]
- Freitag, M.A.; Spence, A. A Newton-based method for the calculation of the distance to instability. Linear Algebra Appl. 2011, 435, 3189–3205. [Google Scholar] [CrossRef]
- Akinola, R.O.; Spence, A. A comparison of the Implicit Determinant Method and Inverse Iteration. J. Niger. Math. Soc. 2014, 33, 205–230. [Google Scholar]
- Lambert, J.D. Computational Methods in Ordinary Differential Equations; John Wiley: New York, NY, USA, 1973. [Google Scholar]
- Demmel, J.W. Discrete Variable Methods in Ordinary Differential Equations; John Wiley: New York, NY, USA, 1962. [Google Scholar]
- Widlund, O.B. A note on unconditionally stable linear multistep methods. BIT Numer. Math. 1967, 7, 65–70. [Google Scholar] [CrossRef]
- Yakubu, D.G.; Shokri, A.; Kumleng, G.M.; Marian, D. Second derivative block hybrid methods for the the numerical integration of differential systems. Fractal Fract. 2022, 6, 386. [Google Scholar] [CrossRef]
- Kaps, P.; Poon, S.W.H.; Bui, T.D. Rosenbrock methods for Stiff ODEs: A comparison of Richardson extrapolation and embedding technique. Pac. J. Sci. Technol. 1985, 34, 17–40. [Google Scholar] [CrossRef]
- Wu, X.Y.; Xiu, J.L. Two low accuracy methods for Stiff systems. Appl. Math. Comput. 2001, 123, 141–153. [Google Scholar] [CrossRef]
- Fatunla, S.O. Numerical integrators for stiff and highly oscillatory differential equations. J. Math. Comput. 1980, 34, 373–390. [Google Scholar] [CrossRef]
Order p | Error Constants | Consistency? | Zero Stability? | Convergence? | |
---|---|---|---|---|---|
5 | −9.0962 | Yes | Yes | Yes | |
5 | 1.3230 | Yes | Yes | Yes | |
5 | 1.4471 | Yes | Yes | Yes | |
5 | −1.7921 | Yes | Yes | Yes |
Order p | Error Constants | Consistency? | Zero Stability? | Convergence? | |
---|---|---|---|---|---|
5 | 3.2510 | Yes | Yes | Yes | |
5 | 1.3230 | Yes | Yes | Yes | |
5 | 5.1663 | Yes | Yes | Yes | |
5 | −1.7921 | Yes | Yes | Yes |
x | y | Absolute Error for | Absolute Error for |
---|---|---|---|
5 | 4.5935115213239299 | 4.4495405902951008 | |
4.8050326706232382 | 4.6460347875344754 | ||
10 | 2.0855112094424000 | 2.0201772875313122 | |
3.1704212170890252 | 3.0313075502139391 | ||
20 | 4.2987802361462157 | 4.1642371192651194 | |
1.3851474630459919 | 1.2925765285153073 | ||
30 | 8.8609023013571046 | 8.5838358912098099 | |
6.0424991742526876 | 5.4886853366277116 | ||
40 | 1.8264620443729859 | 1.7694054396306910 | |
2.6315790821435655 | 2.3195198529150539 | ||
50 | 3.7648125181410106 | 3.6473152891560397 | |
1.1440182168782429 | 9.7481843383636344 |
x | y | Absolute Error in [35] | Absolute Error for | Absolute Error for |
---|---|---|---|---|
5 | 1.228938367083 | 4.5935115213239 | 4.4495405902951 | |
1.800318343625 | 4.8050326706232 | 4.6460347875344 | ||
50 | 3.325679258575 | 3.7648125181410 | 3.6473152891560 | |
5.804723043345 | 1.1440182168782 | 9.7481843383636 | ||
250 | 3.622719245691 | 0 | 0 | |
2.101212666995 | 0 | 0 | ||
500 | 7.173620185942 | 0 | 0 | |
9.350493168888 | 0 | 0 |
x | y | Absolute Error for | Absolute Error for |
---|---|---|---|
5 | 1.8429201220637736 | 2.7234449417878892 | |
1.8429326120728007 | 2.7233922061942195 | ||
10 | 2.8917541972095506 | 4.4907285355610949 | |
2.8917645188142327 | 4.4906853409465430 | ||
20 | 3.8537197115081148 | 6.0765400957535354 | |
3.8537266910596002 | 6.0765109578201498 | ||
30 | 3.9031860015233805 | 6.1072016762397691 | |
3.9031907131441496 | 6.1071820886028638 | ||
40 | 3.5794145759740676 | 5.4886823015453322 | |
3.5794177192603953 | 5.4886691080145620 | ||
50 | 3.0204844833668178 | 4.6178900419926924 | |
3.0204866159418346 | 4.6178811401075847 |
x | y | Absolute Error for | Absolute Error for |
---|---|---|---|
5 | 2.3285830553148310 | 2.2493291039341911 | |
1.3218783622033109 | 1.4477085626385313 | ||
1.2354721309575536 | 1.7115476217234377 | ||
10 | 1.5438485820040401 | 1.5546760679948769 | |
5.0309547106817356 | 5.0285879396184281 | ||
4.6131942308588293 | 6.3093549042213966 | ||
20 | 3.6580869562867370 | 3.6581192736544930 | |
1.9226360458970499 | 1.9226360578422238 | ||
3.2194709960708681 | 4.2961763276024321 | ||
30 | 0 | 0 | |
0 | 0 | ||
0 | 0 | ||
40 | 0 | 0 | |
0 | 0 | ||
0 | 0 | ||
50 | 0 | 0 | |
0 | 0 | ||
0 | 0 |
x | y | Absolute Error for | Absolute Error for |
---|---|---|---|
5 | 2.6069389501515157 | 2.6069389501515157 | |
8.0250935335644924 | 8.0250935335644924 | ||
8.6744998698744801 | 1.2898041482202381 | ||
8.8587245265087100 | 1.3666554329189173 | ||
1.7596617218895716 | 2.7328000973270150 | ||
8.6153306710912148 | 1.3411494137471891 | ||
10 | 5.1681476049220830 | 5.1681476049220830 | |
9.8396182267041682 | 9.8396182267041682 | ||
3.5751428964356635 | 5.3153053899417913 | ||
1.1937922479439249 | 1.8416901846878692 | ||
2.8888368260038266 | 4.4864376970432662 | ||
1.0447198661722723 | 1.6314727346866675 | ||
20 | 7.7855244617256059 | 7.7855244617256059 | |
1.7956044336063368 | 1.7956044336063368 | ||
3.0364165427948283 | 4.5134348071673213 | ||
1.0839615410958194 | 1.6722517595367738 | ||
3.8929657295103809 | 6.0458761478102141 | ||
7.6882944455292090 | 1.2007062011321068 | ||
30 | 0 | 0 | |
0 | 0 | ||
1.9341519135769713 | 2.8744015994507605 | ||
7.3817656946758547 | 1.1388014559059823 | ||
3.9345892715868008 | 6.1105188160798945 | ||
4.2445214010200516 | 6.6252558994506217 | ||
40 | 0 | 0 | |
0 | 0 | ||
1.0951341397262779 | 1.6271787057567443 | ||
4.4684213318548600 | 6.8935327550012643 | ||
3.5348071243628592 | 5.4896470009347222 | ||
2.0799334476961917 | 3.2505248492853411 | ||
50 | 0 | 0 | |
0 | 0 | ||
5.8132012201935056 | 8.6356372622664460 | ||
2.5358248498385642 | 3.9120729933952014 | ||
2.9771677973414147 | 4.6236187847225050 | ||
9.5591937143701955 | 1.4946377469016170 |
x | y | Absolute Error in [35] | Absolute Error for | Absolute Error for |
---|---|---|---|---|
5 | 2.220446049250 | 2.6069389501515 | 2.6069389501515 | |
1.318389841742 | 8.0250935335644 | 8.0250935335644 | ||
0 | 8.6744998698744 | 1.2898041482202 | ||
0 | 8.8587245265087 | 1.3666554329189 | ||
50 | 3.330669073875 | 0 | 0 | |
7.771561172376 | 0 | 0 | ||
4.440892098500 | 5.8132012201935 | 8.6356372622664 | ||
1.110223024625 | 2.5358248498385 | 3.9120729933952 | ||
250 | 6.591949208711 | 0 | 0 | |
1.734723475976 | 0 | 0 | ||
8.326672684688 | 0 | 0 | ||
6.661338147750 | 0 | 0 | ||
500 | 6.810144895924 | 0 | 0 | |
2.710505431213 | 0 | 0 | ||
4.857225732735 | 0 | 0 | ||
3.330669073875 | 0 | 0 |
Example | Size of System | cputime | cputime | ||
---|---|---|---|---|---|
Example 1 | 8 | 1091.10 | 633.14 | 3.6000 | 3.6000 |
Example 2 | 8 | 1,072,275.37 | 652,920.00 | 3.6000 | 3.6666 |
Example 3 | 12 | 67.65 | 22.11 | 5.7000 | 5.8000 |
Example 4 | 24 | 137.34 | 68.07 | 3.9333 | 3.9333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinola, R.O.; Shokri, A.; Sunday, J.; Marian, D.; Akinlabi, O.D. Comparing the Performance of Two Butcher-Based Block Hybrid Algorithms for the Solution of Initial Value Problems. Axioms 2024, 13, 165. https://doi.org/10.3390/axioms13030165
Akinola RO, Shokri A, Sunday J, Marian D, Akinlabi OD. Comparing the Performance of Two Butcher-Based Block Hybrid Algorithms for the Solution of Initial Value Problems. Axioms. 2024; 13(3):165. https://doi.org/10.3390/axioms13030165
Chicago/Turabian StyleAkinola, Richard Olatokunbo, Ali Shokri, Joshua Sunday, Daniela Marian, and Oyindamola D. Akinlabi. 2024. "Comparing the Performance of Two Butcher-Based Block Hybrid Algorithms for the Solution of Initial Value Problems" Axioms 13, no. 3: 165. https://doi.org/10.3390/axioms13030165
APA StyleAkinola, R. O., Shokri, A., Sunday, J., Marian, D., & Akinlabi, O. D. (2024). Comparing the Performance of Two Butcher-Based Block Hybrid Algorithms for the Solution of Initial Value Problems. Axioms, 13(3), 165. https://doi.org/10.3390/axioms13030165