Solvability Criterion for a System Arising from Monge–Ampère Equations with Two Parameters
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Figalli, A. The Monge-Ampère Equation and Its Applications; European Mathematical Society: Helsinki, Finland, 2017. [Google Scholar]
- Caffarelli, L.A. Interior W2,p estimates for solutions of the Monge-Ampère equation. Ann. Math. 1990, 131, 135–150. [Google Scholar] [CrossRef]
- Mohammed, A. Singular boundary value problems for the Monge-Ampère equation. Nonlinear Anal-Theor. 2009, 70, 457–464. [Google Scholar] [CrossRef]
- Mooney, C. Partial regularity for singular solutions to the Monge-Ampère equation. Commun. Pure Appl. Math. 2015, 68, 1066–1084. [Google Scholar] [CrossRef]
- Aranda, C.; Godoy, T. Existence and multiplicity of positive solutions for a singular problem associated to the p-laplacian operator. Electron. J. Differ. Eq. 2004, 2004, 281–286. [Google Scholar]
- Son, B.; Wang, P. Analysis of positive radial solutions for singular superlinear p-Laplacian systems on the exterior of a ball. Nonlinear Anal. 2020, 192, 111657. [Google Scholar] [CrossRef]
- Feng, M. Eigenvalue problems for singular p-Monge-Ampère equations. J. Math. Anal. Appl. 2023, 528, 127538. [Google Scholar] [CrossRef]
- Bruno, F.; Nicolai, K.; Sergio, P. Nontrivial solutions for Monge-Ampère type operators in convex domains. Manuscripta Math. 1993, 79, 13–26. [Google Scholar] [CrossRef]
- Delanoë, P. Radially symmetric boundary value problems for real and complex elliptic Monge-Ampère equations. J. Differ. Equ. 1985, 58, 318–344. [Google Scholar] [CrossRef]
- Feng, M. A class of singular coupled systems of superlinear Monge-Ampère equations. Acta Math. Appl. Sin. Engl. Ser. 2022, 38, 925–942. [Google Scholar] [CrossRef]
- Feng, M. Convex solutions of Monge-Ampère equations and systems: Existence, uniqueness and asymptotic behavior. Adv. Nonlinear Anal. 2020, 10, 371–399. [Google Scholar] [CrossRef]
- Froese Hamfeldt, B. A strong comparison principle for the generalized Dirichlet problem for Monge-Ampère. arXiv 2023, arXiv:2306.01532v1. [Google Scholar]
- Gao, M.; Wang, F. Existence of convex solutions for systems of Monge-Ampère equations. Bound. Value Probl. 2015, 2015, 88–92. [Google Scholar] [CrossRef]
- Hu, S.; Wang, H. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discret. Contin. Dyn. Syst. 2006, 16, 705–720. [Google Scholar] [CrossRef]
- Kutev, N.D. Nontrivial solutions for the equations of Monge-Ampère type. J. Math. Anal. 1988, 132, 424–433. [Google Scholar] [CrossRef]
- Li, Y.; Lu, S. Existence and nonexistence to exterior Dirichlet problem for Monge-Ampère equation. Calc. Var. Partial Differ. Equ. 2018, 57, 161. [Google Scholar] [CrossRef]
- Ma, R.; Gao, H. Positive convex solutions of boundary value problems arising from Monge-Ampère equations. Appl. Math. Comput. 2015, 259, 390–402. [Google Scholar] [CrossRef]
- Tso, K. On a real Monge-Ampère functional. Invent. Math. 1990, 101, 425–448. [Google Scholar] [CrossRef]
- Wang, F.; An, Y. Triple nontrivial radial convex solutions of systems of Monge-Ampère equations. Appl. Math. Lett. 2012, 25, 88–92. [Google Scholar] [CrossRef]
- Wang, H. Convex solutions of systems arising from Monge-Ampère equations. Electron. J. Qual. Theory Differ. Equ. 2009, 2009, 1–8. [Google Scholar]
- Wang, H. Convex solutions of systems of Monge-Ampère equations. arXiv 2010, arXiv:1007.3013v2. [Google Scholar]
- Zhang, X.; Du, Y. Sharp conditions for the existence of boundary blow-up solutions to the Monge-Ampère equation. Calc. Var. Partial Differ. Equ. 2018, 57, 30. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M. Blow-up solutions to the Monge-Ampère equation with a gradient term: Sharp conditions for the existence and asymptotic estimates. Calc. Var. Partial Differ. Equ. 2022, 61, 208. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M. Boundary blow-up solutions to the Monge-Ampère equation: Sharp conditions and asymptotic behavior. Adv. Nonlinear Anal. 2020, 9, 729–744. [Google Scholar] [CrossRef]
- Hao, X.; Wang, H.; Liu, L.; Cui, Y. Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator. Bound. Value Probl. 2017, 2017, 182. [Google Scholar] [CrossRef]
- Yang, X. Existence of positive solutions for 2m-order nonlinear differential systems. Nonlinear Anal-Theor. 2005, 61, 77–95. [Google Scholar] [CrossRef]
- Jiang, R.; Zhai, C. Positive solutions for a system of fourth-order differential equations with integral boundary conditions and two parameters. Nonlinear Anal-Model. 2018, 23, 401–422. [Google Scholar] [CrossRef]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, H. Solvability Criterion for a System Arising from Monge–Ampère Equations with Two Parameters. Axioms 2024, 13, 175. https://doi.org/10.3390/axioms13030175
Wang L, Li H. Solvability Criterion for a System Arising from Monge–Ampère Equations with Two Parameters. Axioms. 2024; 13(3):175. https://doi.org/10.3390/axioms13030175
Chicago/Turabian StyleWang, Liangyu, and Hongyu Li. 2024. "Solvability Criterion for a System Arising from Monge–Ampère Equations with Two Parameters" Axioms 13, no. 3: 175. https://doi.org/10.3390/axioms13030175
APA StyleWang, L., & Li, H. (2024). Solvability Criterion for a System Arising from Monge–Ampère Equations with Two Parameters. Axioms, 13(3), 175. https://doi.org/10.3390/axioms13030175