Second-Order Damped Differential Equations with Superlinear Neutral Term: New Criteria for Oscillation
Abstract
:1. Introduction
- (C1)
- , where and
- (C2)
- , , , and
Motivation
2. Main Results
2.1. Auxiliary Lemmas
2.2. Oscillation Results
3. Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aldiaiji, M.; Qaraad, B.; Iambor, L.F.; Rabie, S.S.; Elabbasy, E.M. Oscillation of Third-Order Differential Equations with Advanced Arguments. Mathematics 2024, 12, 93. [Google Scholar] [CrossRef]
- Qaraad, B.; AL Nuwairan, M. Asymptotic behavior of solutions of the third-order nonlinear advanced differential equations. AIMS Math. 2023, 8, 23800–23814. [Google Scholar] [CrossRef]
- Al-Jaser, A.; Qaraad, B.; Ramos, H.; Serra-Capizzano, S. New Conditions for Testing the Oscillation of Solutions of Second-Order Nonlinear Differential Equations with Damped Term. Axioms 2024, 13, 105. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Dosly, O.; Rehak, P. Half-Linear Differential Equations; Elsevier: Amsterdam, The Netherlands, 2005; Volume 202. [Google Scholar]
- Erbe, L.H.; Kong, Q.; Zhang, B. Oscillation Theory for Functional Differential Equations; Marcel Dekker, Inc.: New York, NY, USA, 1995; p. 190. [Google Scholar]
- Bohner, M.; Li, T. Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math. 2015, 58, 1445–1452. [Google Scholar] [CrossRef]
- Bohner, M.; Saker, S.H. Oscillation of damped second order nonlinear delay differential equations of Emden-Fowler type. Adv. Dyn. Syst. Appl. 2006, 1, 163–182. [Google Scholar]
- Al Themairi, A.; Qaraad, B.; Bazighifan, O.; Nonlaopon, K. Third-order neutral differential equations with damping and distributed delay: New asymptotic properties of solutions. Symmetry 2022, 14, 2192. [Google Scholar] [CrossRef]
- Liu, Q.; Bohner, M.; Grace, R.S.; Li, T. Asymptotic behavior of even-order damped differential equations with p-Laplacian like operators and deviating arguments. J. Inequal. Appl. 2016, 2016, 321. [Google Scholar] [CrossRef]
- Iskandarov, S.; Komartsova, E. On the influence of integral perturbations on the boundedness of solutions of a fourth-order linear differential equation. TWMS J. Pure Appl. Math. 2022, 13, 3–9. [Google Scholar]
- Pankov, P.S.; Zheentaeva, Z.K.; Shirinov, T. Asymptotic reduction of solution space dimension for dynamical systems. TWMS J. Pure Appl. Math. 2021, 12, 243–253. [Google Scholar]
- Musaev, H.K. The Cauchy problem for degenerate parabolic convolution equation. TWMS J. Pure Appl. Math. 2021, 12, 278–288. [Google Scholar]
- Li, T.; Baculíková, B.; Dzurina, J.; Zhang, C. Oscillation of fourth-order neutral differential equations with p-Laplacian like operators bound. Chaos 2014, 2014, 56. [Google Scholar]
- Moaaz, O.; Fahd, M.; Clemente, C.; Shami, A.M.; Alsallami, E.M.K.; Mohamed, L.B. Neutral Differential Equations of Second-Order: Iterative Monotonic Properties. Mathematics 2022, 10, 1356. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Li, T. Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators. J. Math. Analy. Appl. 2014, 409, 1093–1106. [Google Scholar] [CrossRef]
- Hale, J.K. Functional Differential Equations; Springer: New York, NY, USA, 1971; p. 3. [Google Scholar] [CrossRef]
- Jayakumar, C.; Santra, S.S.; Baleanu, D.; Edwan, R.; Govindan, V.; Murugesan, A.; Altanji, M. Oscillation result for half-linear delay difference equations of second-order. Math. Biosci. Eng. 2022, 19, 3879–3891. [Google Scholar] [CrossRef] [PubMed]
- Shokri, A. The symmetric P-stable hybrid Obrenchkoff methods for the numerical solution of second order IVPs. TWMS J. Pure Appl. Math. 2012, 5, 28–35. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T. Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 2015, 254, 408–418. [Google Scholar] [CrossRef]
- Tunç, E.; Kaymaz, A. On oscillation of second-order linear neutral differential equations with damping term. Dynam. Syst. Appl. 2019, 28, 289–301. [Google Scholar] [CrossRef]
- Tunç, E.; Kaymaz, A. Oscillatory behavior of second-order half-linear neutral differential equations with damping. Adv. Dyn. Syst. Appl. 2019, 14, 213–227. [Google Scholar] [CrossRef]
- Grace, S.R.; Graef, J.R.; Tunç, E. Oscillatory behavior of second order damped neutral differential equations with distributed deviating arguments. Miskolc Math. Notes 2017, 18, 759–769. [Google Scholar] [CrossRef]
- Tunç, E.; Osman Özdemir, O. Oscillatory behavior of second-order damped differential equations with a U neutral term. Opusc. Math. 2020, 40, 629–639. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, W.-T. Nonoscillation and Oscillation Theory for Functional Differential Equations; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Baculíkova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef]
- Li, T.; Agarwal, R.P.; Bohner, M. Some oscillation results for second-order neutral dynamic equations. Hacet. J. Math. Stat. 2012, 41, 715–721. [Google Scholar]
- Li, T.; Rogovchenko, Y.V. Oscillation theorems for second-order nonlinear neutral delay differential equations. Abstr. Appl. Anal. 2014, 1–5. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation of second-order neutral differential equations. Math. Nachr. 2015, 288, 1150–1162. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for second-order U Emden-Fowler neutral differential equations. Monatsh. Math. 2017, 184, 489–500. [Google Scholar] [CrossRef]
- Graef, J.R.; Li, T.; Thandapani, E.; Tunc, E. Oscillation of secondorder Emden-Fowler neutral differential equations. Nonlinear Stud. 2013, 20, 1–8. [Google Scholar]
- Thandapani, E.; Padmavathi, S.; Pinelas, S. Classifications of solutions of second-order nonlinear neutral differential equations of mixed type. Adv. Differ. Equ. 2012, 2012, 226. [Google Scholar] [CrossRef]
- Wong, S.W.J. Necessary and suffcient conditions for oscillation of second order neutral differential equations. J. Math. Anal. Appl. 2000, 252, 342–352. [Google Scholar] [CrossRef]
- Aldiaiji, M.; Qaraad, B.; Lambor, L.F.; Elabbasy, E.M. New oscillation theorems for second-order superlinear neutral differential equations with variable damping terms. Symmetry 2023, 15, 1630. [Google Scholar] [CrossRef]
- Philos, C.G. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar]
- Li, B. Oscillation of first order delay differential equations. Proc. Amer. Math. Soc. 1996, 124, 3729–3737. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Jaser, A.; Cesarano, C.; Qaraad, B.; Iambor, L.F. Second-Order Damped Differential Equations with Superlinear Neutral Term: New Criteria for Oscillation. Axioms 2024, 13, 234. https://doi.org/10.3390/axioms13040234
Al-Jaser A, Cesarano C, Qaraad B, Iambor LF. Second-Order Damped Differential Equations with Superlinear Neutral Term: New Criteria for Oscillation. Axioms. 2024; 13(4):234. https://doi.org/10.3390/axioms13040234
Chicago/Turabian StyleAl-Jaser, Asma, Clemente Cesarano, Belgees Qaraad, and Loredana Florentina Iambor. 2024. "Second-Order Damped Differential Equations with Superlinear Neutral Term: New Criteria for Oscillation" Axioms 13, no. 4: 234. https://doi.org/10.3390/axioms13040234
APA StyleAl-Jaser, A., Cesarano, C., Qaraad, B., & Iambor, L. F. (2024). Second-Order Damped Differential Equations with Superlinear Neutral Term: New Criteria for Oscillation. Axioms, 13(4), 234. https://doi.org/10.3390/axioms13040234