On Properties and Classification of a Class of 4-Dimensional 3-Hom-Lie Algebras with a Nilpotent Twisting Map
Abstract
:1. Introduction
2. Definitions and Properties of n-Hom-Lie Algebras
- for all ,
- ,
- for all .
- (or equivalently ).
- (i)
- If , is nilpotent, then is not trivial ().
- (ii)
- If , then or or .
- (i)
- The first statement is a generalization of Lemma 3 to the case of n-ary skew-symmetric Hom-algebras, and is proved in the same way, since the original proof does not use the Hom-Nambu–Filippov identity.
- (ii)
- Suppose that and that . Let be a basis of A such that , then for all , which means that for all . □
- (i)
- If , then is multiplicative if and only if .
- (ii)
- If , then is multiplicative if and only if and , where is defined in (8).
3. Class of 4-dimensional 3-Hom-Lie Algebras
4. Derived Series and Central Descending Series for
- (1)
- . This also means that is not nilpotent.
- (2)
- If is 2-solvable, then
- (2.a)
- If , then is 2-solvable of class 3.
- (2.b)
- If , then is 2-solvable of class 2.
- (1)
- 3-solvable of class 2, non-2-solvable, non-nilpotent, with trivial center:with , in that case we have .
- (2)
- 3-solvable of class 2, 2-solvable of class 3, non-nilpotent, with trivial center:with orsuch that .
- (3)
- 3-solvable of class 2, 2-solvable of class 2, non-nilpotent, with trivial center:
- (4)
- 3-solvable of class 2, 2-solvable of class 2, non-nilpotent, with 1-dimensional center:with (that is, not all , , , are zero), or
- (5)
- 3-solvable of class 2, 2-solvable of class 2, nilpotent of class 2, with 1-dimensional center:
- (2m)
- 3-solvable of class 2, 2-solvable of class 3, non-nilpotent, with trivial center:with .
- (4m)
- 3-solvable of class 2, 2-solvable of class 2, non-nilpotent, with 1-dimensional center:
- (5m)
- 3-solvable of class 2, 2-solvable of class 2, nilpotent of class 2, with 1-dimensional center:
5. Isomorphism Classes for
- (1)
- , non-2-solvable, non-nilpotent, with trivial center, that is,
- (2)
- , 2-solvable of class 3, non-nilpotent, with trivial center, which is equivalent to and , thus B takes the form
- (3)
- , 2-solvable of class 2, non-nilpotent, with trivial center. In this case, the matrix defining the bracket is given by
- (3.a)
- If , then taking
- (3.b)
- If , then consider and , since otherwise the center of the algebra would become non-zero (Theorem 1):Consider now two such 3-Hom-Lie algebras with different parameters and , and denote the matrices defining the brackets by and , respectively. Those 3-Hom-Lie algebras are isomorphic if and only if
- (3.c)
- If , thenTaking gives
- (4)
- , is 2-solvable of class 2, non-nilpotent, with 1-dimensional center.
- (4.a)
- We consider first the case when and , where , thenIf , then taking
- (4.b)
- If , then
- (4.c)
- If and , then
- (4.d)
- If and , then
- (4.e)
- If and , then
- (4.f)
- Now, we consider the case where and , we have
- (4.g)
- If , then
- (4.h)
- If , thenIf , then the 3-Hom-Lie algebra becomes nilpotent.
- (5)
- , 2-solvable of class 2, nilpotent of class 2, with 1-dimensional center. In this case, the matrix defining the bracket of takes the following form:
6. Examples and Remarks
- Case 2.a (Table 2) In this case,
7. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartwig, J.T.; Larsson, D.; Silvestrov, S.D. Deformations of Lie algebras using σ-derivations. J. Algebra 2006, 295, 314–361, (Preprints in Mathematical Sciences 2003:32, LUTFMA-5036-2003, Centre for Mathematical Sciences, Lund University, 52 pp, 2003). [Google Scholar] [CrossRef]
- Aizawa, N.; Sato, H. q-Deformation of the Virasoro algebra with central extension. Phys. Lett. B 1991, 256, 185–190. [Google Scholar] [CrossRef]
- Chaichian, M.; Ellinas, D.; Popowicz, Z. Quantum conformal algebra with central extension. Phys. Lett. B 1990, 248, 95–99. [Google Scholar] [CrossRef]
- Chaichian, M.; Isaev, A.P.; Lukierski, J.; Popowic, Z.; Prešnajder, P. q-Deformations of Virasoro algebra and conformal dimensions. Phys. Lett. B 1991, 262, 32–38. [Google Scholar] [CrossRef]
- Chaichian, M.; Kulish, P.; Lukierski, J. q-Deformed Jacobi identity, q-oscillators and q-deformed infinite-dimensional algebras. Phys. Lett. B 1990, 237, 401–406. [Google Scholar] [CrossRef]
- Chaichian, M.; Popowicz, Z.; Prešnajder, P. q-Virasoro algebra and its relation to the q-deformed KdV system. Phys. Lett. B 1990, 249, 63–65. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (p, q)-deformed Virasoro algebra. J. Phys. A Math. Gen. 1992, 25, 2607–2614. [Google Scholar] [CrossRef]
- Curtright, T.L.; Zachos, C.K. Deforming maps for quantum algebras. Phys. Lett. B 1990, 243, 237–244. [Google Scholar] [CrossRef]
- Damaskinsky, E.V.; Kulish, P.P. Deformed oscillators and their applications. Zap. Nauch. Semin. LOMI 1991, 189, 37–74. (In Russian); English translation in J. Sov. Math. 1992, 62, 2963–2986. [Google Scholar]
- Daskaloyannis, C. Generalized deformed Virasoro algebras. Modern Phys. Lett. A 1992, 7, 809–816. [Google Scholar] [CrossRef]
- Hu, N. q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq. 1999, 6, 51–70. [Google Scholar]
- Kassel, C. Cyclic homology of differential operators, the Virasoro algebra and a q-analogue. Comm. Math. Phys. 1992, 146, 343–356. [Google Scholar] [CrossRef]
- Liu, K.Q. Quantum central extensions. C. R. Math. Rep. Acad. Sci. Canada 1991, 13, 135–140. [Google Scholar]
- Liu, K.Q. Characterizations of the quantum Witt algebra. Lett. Math. Phys. 1992, 24, 257–265. [Google Scholar] [CrossRef]
- Liu, K.Q. The Quantum Witt Algebra and Quantization of Some Modules over Witt Algebra. Ph.D. Thesis, Department of Mathematics, University of Alberta, Edmonton, AB, Canada, 1992. [Google Scholar]
- Larsson, D.; Silvestrov, S.D. Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J. Algebra 2005, 288, 321–344, (Preprints in Mathematical Sciences 2004:3, LUTFMA-5038-2004, Centre for Mathematical Sciences, Lund University, 40 pp, 2004). [Google Scholar] [CrossRef]
- Larsson, D.; Silvestrov, S.D. Quasi-Lie algebras. In Noncommutative Geometry and Representation Theory in Mathematical Physics; Fuchs, J., Mickelsson, J., Rozenblioum, G., Stolin, A., Westerberg, A., Eds.; American Mathematical Society, Contemporary Mathematics: Providence, RI, USA, 2005; Volume 391, pp. 241–248, (Preprints in Mathematical Sciences 2004:30, LUTFMA-5049-2004, Centre for Mathematical Sciences, Lund University, 11 pp, 2004). [Google Scholar]
- Larsson, D.; Silvestrov, S.D. Graded quasi-Lie agebras. Czechoslovak J. Phys. 2005, 55, 1473–1478. [Google Scholar] [CrossRef]
- Sigurdsson, G.; Silvestrov, S. Graded quasi-Lie algebras of Witt type. Czech. J. Phys. 2006, 56, 1287–1291. [Google Scholar] [CrossRef]
- Makhlouf, A.; Silvestrov, S.D. Hom-algebra structures. J. Gen. Lie Theory Appl. 2008, 2, 51–64, (Preprints in Mathematical Sciences 2006:10, LUTFMA-5074-2006, Centre for Mathematical Sciences, Lund University, 18 pp, 2006). [Google Scholar] [CrossRef]
- Larsson, D.; Silvestrov, S.D. Quasi-deformations of sl2() using twisted derivations. Comm. Algebra 2007, 35, 4303–4318, (arXiv 2005, arXiv:math/0506172). [Google Scholar] [CrossRef]
- Ammar, F.; Ejbehi, Z.; Makhlouf, A. Cohomology and deformations of Hom-algebras. J. Lie Theory 2011, 21, 813–836. [Google Scholar]
- Benayadi, S.; Makhlouf, A. Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 2014, 76, 38–60. [Google Scholar] [CrossRef]
- Elchinger, O.; Lundengård, K.; Makhlouf, A.; Silvestrov, S.D. Brackets with (τ,σ)-derivations and (p,q)-deformations of Witt and Virasoro algebras. Forum Math. 2016, 28, 657–673. [Google Scholar] [CrossRef]
- Larsson, D.; Sigurdsson, G.; Silvestrov, S.D. Quasi-Lie deformations on the algebra [t]/(tN). J. Gen. Lie Theory Appl. 2008, 2, 201–205. [Google Scholar] [CrossRef]
- Larsson, D.; Silvestrov, S.D. On generalized N-complexes comming from twisted derivations. In Generalized Lie Theory in Mathematics, Physics and Beyond; Silvestrov, S., Paal, E., Abramov, V., Stolin, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 81–88. [Google Scholar]
- Makhlouf, A.; Silvestrov, S. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. In Generalized Lie Theory in Mathematics, Physics and Beyond; Silvestrov, S., Paal, E., Abramov, V., Stolin, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 189–206, (Preprints in Mathematical Sciences 2007:25, LUTFMA-5091-2007, Centre for Mathematical Sciences, Lund University, 13 pp, 2007. arXiv 2007, arXiv:0709.2413). [Google Scholar]
- Makhlouf, A.; Silvestrov, S.D. Hom-algebras and Hom-coalgebras. J. Algebra Appl. 2010, 9, 553–589, (Preprints in Mathematical Sciences 2008:19, LUTFMA-5103-2008, Centre for Mathematical Sciences, Lund University, 2008. arXiv 2007, arXiv:0811.0400). [Google Scholar] [CrossRef]
- Makhlouf, A.; Silvestrov, S. Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 2010, 22, 715–739, (Preprints in Mathematical Sciences 2007:31, LUTFMA-5095-2007, Centre for Mathematical Sciences, Lund University, 18 pp, 2007. arXiv 2007, arXiv:0712.3130). [Google Scholar] [CrossRef]
- Richard, L.; Silvestrov, S.D. Quasi-Lie structure of σ-derivations of [t±1]. J. Algebra 2008, 319, 1285–1304, (Preprints in Mathematical Sciences 2006:12, LUTFMA-5076-2006, Centre for Mathematical Sciences, Lund University, 19 pp, 2006). [Google Scholar] [CrossRef]
- Sheng, Y. Representations of hom-Lie algebras. Algebr. Reprensent. Theory 2012, 15, 1081–1098. [Google Scholar] [CrossRef]
- Sigurdsson, G.; Silvestrov, S. Lie color and hom-Lie algebras of Witt type and their central extensions. In Generalized Lie Theory in Mathematics, Physics and Beyond; Springer: Berlin, Germany, 2009; pp. 247–255. [Google Scholar]
- Yau, D. Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2008, 2, 95–108. [Google Scholar] [CrossRef]
- Yau, D. Hom-algebras and homology. J. Lie Theory 2009, 19, 409–421. [Google Scholar]
- Nambu, Y. Generalized Hamiltonian dynamics. Phys. Rev. D 1973, 7, 2405–2412. [Google Scholar] [CrossRef]
- Takhtajan, L.A. On foundation of the generalized Nambu mechanics. Comm. Math. Phys. 1994, 160, 295–315. [Google Scholar] [CrossRef]
- Filippov, V.T. n-Lie algebras. Sib. Mat. Zh. 1985, 26, 126–140. (In Russian); English transl. in Siberian Math. J. 1985, 26, 879–891. [Google Scholar] [CrossRef]
- Kasymov, S.M. Theory of n-Lie algebras. Algebra Log. 1987, 26, 155–166. [Google Scholar] [CrossRef]
- Carlsson, R. n-Ary algebras. Nagoya Math. J. 1980, 78, 45–65. [Google Scholar] [CrossRef]
- Vainerman, L.; Kerner, R. On special classes of n-algebras. J. Math. Phys. 1996, 37, 2553–2565. [Google Scholar] [CrossRef]
- Bai, C.; Guo, L.; Sheng, Y. Bialgebras, the classical Yang-Baxter equation and Manin triples for 3-Lie algebras. Adv. Theor. Math. Phys. 2019, 23, 27–74. [Google Scholar] [CrossRef]
- Bai, R.; An, H.; Li, Z. Centroid structures of n-Lie algebras. Linear Algebra Appl. 2009, 430, 229–240. [Google Scholar] [CrossRef]
- Bai, R.; Bai, C.; Wang, J. Realizations of 3-Lie algebras. J. Math. Phys. 2010, 51, 063505. [Google Scholar] [CrossRef]
- Bai, R.; Chen, L.; Meng, D. The Frattini subalgebra of n-Lie algebras. Acta Math. Sin. Engl. Ser. 2007, 23, 847–856. [Google Scholar] [CrossRef]
- Bai, R.; Meng, D. The central extension of n-Lie algebras. Chin. Ann. Math. 2006, 27, 491–502. [Google Scholar]
- Bai, R.; Meng, D. The centroid of n-Lie algebras. Algebr. Groups Geom. 2004, 25, 29–38. [Google Scholar]
- Bai, R.; Song, G.; Zhang, Y. On classification of n-Lie algebras. Front. Math. China 2011, 6, 581–606. [Google Scholar] [CrossRef]
- Bai, R.; Wang, X.; Xiao, W.; An, H. The structure of low dimensional n-Lie algebras over the field of characteristic 2. Linear Algebra Appl. 2008, 428, 1912–1920. [Google Scholar] [CrossRef]
- Bai, R.; Wu, Y.; Li, J.; Zhou, H. Constructing (n+1)-Lie algebras from n-Lie algebras. J. Phys. A Math. Theor. 2012, 45, 475206. [Google Scholar] [CrossRef]
- Bai, R.; Zhang, Z.; Li, H.; Shi, H. The inner derivation algebras of (n+1)-dimensional n-Lie algebras. Comm. Algebra 2000, 28, 2927–2934. [Google Scholar]
- Abramov, V. Super 3-Lie algebras induced by super Lie algebras. Adv. Appl. Clifford Algebr. 2017, 27, 9–16. [Google Scholar] [CrossRef]
- Abramov, V. Weil algebra, 3-Lie algebra and B.R.S. algebra. In Algebraic Structures and Applications; Silvestrov, S., Malyarenko, A., Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2020; Volume 317, pp. 1–12, (arXiv 2018, arXiv:1802.05576). [Google Scholar]
- Abramov, V.; Lätt, P. Classification of low dimensional 3-Lie superalgebras. In Engineering Mathematics II; Silvestrov, S., Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2016; Volume 179, pp. 1–12. [Google Scholar]
- Abramov, V.; Lätt, P. Ternary Lie superalgebras and Nambu-Hamilton equation in superspace. In Algebraic Structures and Applications; Silvestrov, S., Malyarenko, A., Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2020; Volume 317, pp. 47–80. [Google Scholar]
- Casas, J.M.; Loday, J.-L.; Pirashvili, T. Leibniz n-algebras. Forum Math. 2002, 14, 189–207. [Google Scholar] [CrossRef]
- Daletskii, Y.L.; Takhtajan, L.A. Leibniz and Lie algebra structures for Nambu algebra. Lett. Math. Phys. 1997, 39, 127–141. [Google Scholar] [CrossRef]
- Rotkiewicz, M. Cohomology ring of n-Lie algebras. Extr. Math. 2005, 20, 219–232. [Google Scholar]
- Takhtajan, L.A. Higher order analog of Chevalley-Eilenberg complex and deformation theory of n-gebras. St. Petersburg Math. J. 1995, 6, 429–438. [Google Scholar]
- Ling, W.X. On the Structure of n-Lie Algebras. Ph.D. Thesis, University-GHS-Siegen, Siegen, Germany, 1993. [Google Scholar]
- De Azcárraga, J.A.; Izquierdo, J.M. n-Ary algebras: A review with applications. J. Phys. A Math. Theor. 2010, 43, 293001. [Google Scholar] [CrossRef]
- Cantarini, N.; Kac, V.G. Classification of simple linearly compact n-Lie superalgebras. Comm. Math. Phys. 2010, 298, 833–853. [Google Scholar] [CrossRef]
- Ren, M.; Chen, Z.; Liang, K. Classification of (n + 2)-dimensional metric n-Lie algebras. J. Nonlinear Math. Phys. 2010, 17, 243–249. [Google Scholar] [CrossRef]
- Geng, Q.; Ren, M.; Chen, Z. Classification of (n + 3)-dimensional metric n-Lie algebras. J. Math. Phys. 2010, 51, 103507. [Google Scholar] [CrossRef]
- Bai, R.; Wu, W.; Chen, Z. Classifications of (n + k)-dimensional metric n-Lie algebras. J. Phys. A 2013, 46, 145202. [Google Scholar] [CrossRef]
- Eshrati, M.; Saeedi, F.; Darabi, H. Low dimensional nilpotent n-Lie algebras. arXiv 2018, arXiv:1810.03782. [Google Scholar]
- Darabi, H.; Saeedi, F.; Eshrati, M. A characterization of finite dimensional nilpotent Fillipov algebras. J. Geom. Phys. 2016, 101, 100–107. [Google Scholar] [CrossRef]
- Eshrati, M.; Saeedi, F.; Darabi, H. On the multiplier of nilpotent n-Lie algebras. J. Algebra 2016, 450, 162–172. [Google Scholar] [CrossRef]
- Darabi, H.; Saeedi, F.; Eshrati, M. Capable n-Lie algebras and the classification of nilpotent n-Lie algebras with s(A) = 3. J. Geom. Phys. 2016, 110, 25–29. [Google Scholar] [CrossRef]
- Hoseini, Z.; Saeedi, F.; Darabi, H. On classification of (n + 5)-dimensional nilpotent n-Lie algebras of class two. Bull. Iranian Math. Soc. 2019, 45, 939–949. [Google Scholar] [CrossRef]
- Jamshidi, M.; Saeedi, F.; Darabi, H. On classification of (n + 6)-dimensional nilpotent n-Lie algebras of class 2 with n ≥ 4. Arab J. Math. Sci. 2021, 27, 139–150. [Google Scholar] [CrossRef]
- Li, X.; Li, Y. Classification of 3-dimensional multiplicative Hom-Lie algebras. J. Xinyang Norm. Univ. 2012, 455, 427–430. [Google Scholar]
- Makhlouf, A.; Mehidi, M. On classification of filiform Hom-Lie algebras. In Algebraic Structures and Applications; Silvestrov, S., Malyarenko, A., Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2020; Volume 317, pp. 189–221. [Google Scholar]
- Remm, E.; Goze, M. On the algebraic variety of Hom-Lie algebras. arXiv 2017, arXiv:1706.02484. [Google Scholar]
- Fernández-Culma, E.A.; Rojas, N. On the classification of 3-dimensional complex hom-Lie algebras. J. Pure Appl. Algebra 2023, 227, 107272. [Google Scholar] [CrossRef]
- Ongong’a, E.; Ongaro, J.; Silvestrov, S. Hom-Lie Structures on Complex 4-Dimensional Lie Algebras. In Lie Theory and Its Applications in Physics; Dobrev, V., Ed.; LT 2019; Springer Proceedings in Mathematics & Statistics; Springer: Singapore, 2020; Volume 335, pp. 373–381. [Google Scholar]
- García-Delgado, R.; Salgado, G.; Sánchez-Valenzuela, O.A. On 3-dimensional complex Hom-Lie algebras. J. Algebra 2020, 555, 361–385. [Google Scholar] [CrossRef]
- Ongong’a, E.; Richter, J.; Silvestrov, S.D. Classification of 3-dimensional Hom-Lie algebras. J. Phys. Conf. Ser. 2019, 1194, 012084. [Google Scholar] [CrossRef]
- Ongong’a, E.; Richter, J.; Silvestrov, S. Classification of low-dimensional Hom-Lie algebras. In Algebraic Structures and Applications; Silvestrov, S., Malyarenko, A., Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2020; Volume 317, pp. 223–256. [Google Scholar]
- Wang, C.; Zhang, Q.; Zhu, W. A classification of low dimensional multiplicative Hom-Lie superalgebras. Open Math. 2016, 14, 613–628. [Google Scholar] [CrossRef]
- Li, J. The classifications of low-dimensional Hom-Lie triple systems. Math. Aeterna 2015, 5, 551–555. [Google Scholar]
- Ataguema, H.; Makhlouf, A.; Silvestrov, S. Generalization of n-ary Nambu algebras and beyond. J. Math. Phys. 2009, 50, 083501. [Google Scholar] [CrossRef]
- Ammar, F.; Mabrouk, S.; Makhlouf, A. Representation and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras. J. Geom. Phys. 2011, 61, 1898–1913. [Google Scholar] [CrossRef]
- Arnlind, J.; Makhlouf, A.; Silvestrov, S. Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras. J. Math. Phys. 2010, 51, 043515. [Google Scholar] [CrossRef]
- Arnlind, J.; Makhlouf, A.; Silvestrov, S. Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras. J. Math. Phys. 2011, 52, 123502. [Google Scholar] [CrossRef]
- Kitouni, A.; Makhlouf, A.; Silvestrov, S. On (n + 1)-Hom-Lie algebras induced by n-Hom-Lie algebras. Georgian Math. J. 2016, 23, 75–95. [Google Scholar] [CrossRef]
- Yau, D. A Hom-associative analogue of Hom-Nambu algebras. arXiv 2010, arXiv:1005.2373. [Google Scholar]
- Yau, D. On n-ary Hom-Nambu and Hom-Nambu-Lie algebras. J. Geom. Phys. 2012, 62, 506–522. [Google Scholar] [CrossRef]
- Kitouni, A.; Makhlouf, A.; Silvestrov, S. On n-ary generalization of BiHom-Lie algebras and BiHom-associative algebras. In Algebraic Structures and Applications; Silvestrov, S., Malyarenko, A., Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2020; Volume 317, pp. 99–126. [Google Scholar]
- Ben Abdeljelil, A.; Elhamdadi, M.; Kaygorodov, I.; Makhlouf, A. Generalized derivations of n-BiHom-Lie algebras. In Algebraic Structures and Applications; Silvestrov, S., Malyarenko, A., Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2020; Volume 317, pp. 81–97, (arXiv 2019, arXiv:1901.09750). [Google Scholar]
- Beites, P.D.; Kaygorodov, I.; Popov, Y. Generalized derivations of multiplicative n-ary Hom-Ω color algebras. Bull. Malays. Math. Sci. Soc. 2019, 42, 315–335. [Google Scholar] [CrossRef]
- Abdaoui, K.; Mabrouk, S.; Makhlouf, A. Cohomology of Hom-Leibniz and n-ary Hom-Nambu-Lie superalgebras. arXiv 2014, arXiv:1406.3776. [Google Scholar]
- Mabrouk, S.; Ncib, O.; Silvestrov, S. Generalized derivations and Rota-Baxter operators of n-ary Hom-Nambu superalgebras. Adv. Appl. Clifford Algebr. 2021, 31, 32, (arXiv 2019, arXiv:2003.01080). [Google Scholar] [CrossRef]
- Abramov, V.; Silvestrov, S. 3-Hom-Lie algebras based on σ-derivation and involution. Adv. Appl. Clifford Algebr. 2020, 30, 45. [Google Scholar] [CrossRef]
- Bakayoko, I.; Silvestrov, S. Multiplicative n-Hom-Lie color algebras. In Algebraic Structures and Applications; Silvestrov, S., Malyarenko, A., Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2020; Volume 317, pp. 159–187, (arXiv 2019, arXiv:1912.10216). [Google Scholar]
- Awata, H.; Li, M.; Minic, D.; Yoneya, T. On the quantization of Nambu brackets. J. High Energy Phys. 2001, 013. [Google Scholar] [CrossRef]
- Arnlind, J.; Kitouni, A.; Makhlouf, A.; Silvestrov, S. Structure and cohomology of 3-Lie algebras induced by Lie algebras. In Algebra, Geometry and Mathematical Physics; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2014; Volume 85, pp. 123–144. [Google Scholar]
- Kitouni, A.; Makhlouf, A. On structure and central extensions of (n + 1)-Lie algebras induced by n-Lie algebras. arXiv 2014, arXiv:1405.5930. [Google Scholar]
- Ben Hassine, A.; Mabrouk, S.; Ncib, O. Some constructions of multiplicative n-ary hom-Nambu algebras. Adv. Appl. Clifford Algebr. 2019, 29, 88. [Google Scholar] [CrossRef]
- Kitouni, A.; Makhlouf, A.; Silvestrov, S. On solvability and nilpotency for n-Hom-Lie algebras and (n + 1)-Hom-Lie algebras induced by n-Hom-Lie algebras. In Algebraic Structures and Applications; Silvestrov, S., Malyarenko, A., Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2020; Volume 317, pp. 127–157. [Google Scholar]
- Kitouni, A.; Silvestrov, S. On Classification of (n + 1)-dimensional n-Hom-Lie algebras with nilpotent twisting maps. In Non-commutative and Non-associative Algebra and Analysis Structures; Silvestrov, S., Malyarenko, A., Eds.; Proceedings in Mathematics and Statistics; Springer: Berlin/Heidelberg, Germany, 2023; Volume 426, pp. 525–562. [Google Scholar]
, non-2-solvable, non-nilpotent, with trivial center: | |
1.a | . |
Two such 3-Hom-Lie algebras, given by the structure constants | |
and , respectively, are isomorphic if and only if | |
and | |
and is a square in . Thus, this family of 3-Hom-Lie algebras up | |
to isomorphism is parametrized by , where is the factor | |
group of by . | |
1.b | and are non-zero since . |
Two such 3-Hom-Lie algebras, given by the structure constants | |
and , respectively, are isomorphic if and only if | |
is a square in . | |
1.c | , and . |
In this case, also and are non-zero since . | |
Two such 3-Hom-Lie algebras, given by the structure constants | |
and , respectively, are isomorphic if and only if | |
is a square in . | |
1.d | and . Similarly, in this case |
and are non-zero since . | |
Two such 3-Hom-Lie algebras given by the structure constants | |
and are isomorphic if and only if is a square | |
in . In particular, if is a square in , we obtain the following brackets: | |
, 2-solvable of class 3, non-nilpotent, with trivial center, that is, | |
, , equivalent to | |
and for some | |
or and : | |
2.a | , hence |
Any two different brackets of this form give non-isomorphic 3-Hom-Lie algebras. | |
2.b | and , which means that |
(else the 3-Hom-Lie algebra would be 2-solvable of class 2). | |
For , | |
Two such brackets given by the structure constants and | |
define isomorphic 3-Hom-Lie algebras if and only if is a square in . | |
2.c | and , which means that |
(else the 3-Hom-Lie algebra would be 2-solvable of class 2). | |
For and , | |
Two such brackets given by the structure constants and | |
are isomorphic if and only if is a square in . | |
2.d | and , which means that |
(else the 3-Hom-Lie algebra would be 2-solvable of class 2). | |
For and , the 3-Hom-Lie algebra | |
is multiplicative. | |
2.e | Two such brackets given by the structure constants and |
define isomorphic 3-Hom-Lie algebras if and only if is a square in . | |
and , | |
Any two different brackets of this form give non-isomorphic 3-Hom-Lie algebras. | |
2.f | and , |
, | |
2.g | , and |
Two such brackets given by the structure constants and | |
define isomorphic 3-Hom-Lie algebras if and only if | |
and is a square in . | |
2.h | and , |
, and . | |
This 3-Hom-Lie algebra is multiplicative, | |
Two such brackets given by the structure constants and | |
define isomorphic 3-Hom-Lie algebras if and only if is a square in . |
, 2-solvable of class 2, non-nilpotent, with trivial center: | |
3.a | |
3.b | , and |
3.c | , and |
, 2-solvable of class 2, non-nilpotent, with 1-dimensional center: | |
, with and | |
4.a | , |
. | |
Two such brackets with parameters and define isomorphic 3-Hom-Lie | |
algebras if and only if | |
4.b | , with and , , |
Two such brackets given by the structure constants and | |
define isomorphic 3-Hom-Lie algebras if and only if is a square in . | |
4.c | , with and , , |
4.d | , with and , , |
4.e | , with and , , , |
4.f | , |
4.g | , , , |
Two such brackets given by the structure constants and | |
define isomorphic 3-Hom-Lie algebras if and only if is a square in . | |
4.h | , , , |
Two such brackets given by the structure constants and | |
define isomorphic 3-Hom-Lie algebras if and only if is a square in . | |
This bracket defines a multiplicative 3-Hom-Lie algebra. |
, 2-solvable of class 2, nilpotent of class 2, with 1-dimensional center: | |
5.a | |
5.b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitouni, A.; Silvestrov, S. On Properties and Classification of a Class of 4-Dimensional 3-Hom-Lie Algebras with a Nilpotent Twisting Map. Axioms 2024, 13, 373. https://doi.org/10.3390/axioms13060373
Kitouni A, Silvestrov S. On Properties and Classification of a Class of 4-Dimensional 3-Hom-Lie Algebras with a Nilpotent Twisting Map. Axioms. 2024; 13(6):373. https://doi.org/10.3390/axioms13060373
Chicago/Turabian StyleKitouni, Abdennour, and Sergei Silvestrov. 2024. "On Properties and Classification of a Class of 4-Dimensional 3-Hom-Lie Algebras with a Nilpotent Twisting Map" Axioms 13, no. 6: 373. https://doi.org/10.3390/axioms13060373
APA StyleKitouni, A., & Silvestrov, S. (2024). On Properties and Classification of a Class of 4-Dimensional 3-Hom-Lie Algebras with a Nilpotent Twisting Map. Axioms, 13(6), 373. https://doi.org/10.3390/axioms13060373