An Accelerated Dual-Integral Structure Zeroing Neural Network Resistant to Linear Noise for Dynamic Complex Matrix Inversion
Abstract
:1. Introduction
2. Problem Formulation, Design Formula, and ADISZNN Model
2.1. Consideration of the DCMI Problem
2.2. Design Formula
2.3. Dual-Integral Structure ZNN Model Design
2.4. ADISZNN Model Design
3. Theoretical Analyses
3.1. Convergence
3.2. Robustness
3.3. Selection of Activation Function
- LAF:
- SBPSAF:
- SBPAF:
4. Simulation and Comparative Numerical Experiments
4.1. Comparison Experiments of Activation Functions
4.2. Comparison Experiments between DISZNN and ADISZNN
4.3. The Stable ADISZNN Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ZNN | Zeroing neural network |
GNN | Gradient neural network |
DNSZNN | Dual noise-suppressed ZNN |
DISZNN | Dual-integral structure zeroing neural network |
CVZNN | Complex-valued ZNN |
IEZNN | Integral-enhanced ZNN |
CVNTZNN | Complex-valued noise-tolerant ZNN |
ADISZNN | Accelerated dual-integral structure zeroing neural network |
DRMI | Dynamic real matrix inversion |
DCMI | Dynamic complex matrix inversion |
AF | Activation function |
LAF | Linear activation function |
SBPAF | Signal bi-power activation function |
SBPSAF | Smooth bi-polar sigmoid activation function |
Appendix A. Limitation
- The ADISZNN model and the ADISZNN-Stable model proposed in this paper currently do not handle discontinuous noise.
- This paper restricts the inversion of matrices to be non-singular, smooth, dynamic, and complex. The problem of inverting singular or non-smooth matrices is not addressed in this paper.
References
- Jin, J.; Chen, W.; Ouyang, A.; Yu, F.; Liu, H. A time-varying fuzzy parameter zeroing neural network for the synchronization of chaotic systems. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 8, 364–376. [Google Scholar] [CrossRef]
- Zhang, R.; Xi, X.; Tian, H.; Wang, Z. Dynamical analysis and finite-time synchronization for a chaotic system with hidden attractor and surface equilibrium. Axioms 2022, 11, 579. [Google Scholar] [CrossRef]
- Rasouli, M.; Zare, A.; Hallaji, M.; Alizadehsani, R. The synchronization of a class of time-delayed chaotic systems using sliding mode control based on a fractional-order nonlinear PID sliding surface and its application in secure communication. Axioms 2022, 11, 738. [Google Scholar] [CrossRef]
- Gao, R. Inverse kinematics solution of Robotics based on neural network algorithms. J. Ambient Intell. Humaniz. Comput. 2020, 11, 6199–6209. [Google Scholar] [CrossRef]
- Hu, Z.; Xiao, L.; Li, K.; Li, K.; Li, J. Performance analysis of nonlinear activated zeroing neural networks for time-varying matrix pseudoinversion with application. Appl. Soft Comput. 2021, 98, 106735. [Google Scholar] [CrossRef]
- Ramos, H.; Monteiro, M.T.T. A new approach based on the Newton’s method to solve systems of nonlinear equations. J. Comput. Appl. Math. 2017, 318, 3–13. [Google Scholar] [CrossRef]
- Andreani, R.; Haeser, G.; Ramos, A.; Silva, P.J. A second-order sequential optimality condition associated to the convergence of optimization algorithms. IMA J. Numer. Anal. 2017, 37, 1902–1929. [Google Scholar]
- Zhang, Y. Revisit the analog computer and gradient-based neural system for matrix inversion. In Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, Limassol, Cyprus, 27–29 June 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 1411–1416. [Google Scholar]
- Zhang, Y.; Chen, K.; Tan, H.Z. Performance analysis of gradient neural network exploited for online time-varying matrix inversion. IEEE Trans. Autom. Control 2009, 54, 1940–1945. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Y.; Chen, K.; Wang, C. Global exponential convergence and stability of gradient-based neural network for online matrix inversion. Appl. Math. Comput. 2009, 215, 1301–1306. [Google Scholar] [CrossRef]
- Xiao, L.; Li, K.; Tan, Z.; Zhang, Z.; Liao, B.; Chen, K.; Jin, L.; Li, S. Nonlinear gradient neural network for solving system of linear equations. Inf. Process. Lett. 2019, 142, 35–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, S. A general recurrent neural network model for time-varying matrix inversion. In Proceedings of the 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Maui, HI, USA, 9–12 December 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 6, pp. 6169–6174. [Google Scholar]
- Johnson, M.A.; Moradi, M.H. PID Control; Springer: Heidelberg, Germany, 2005. [Google Scholar]
- Jin, L.; Zhang, Y.; Li, S. Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises. IEEE Trans. Neural Networks Learn. Syst. 2015, 27, 2615–2627. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Ogata, K. Control systems analysis in state space. In Modern Control Engineering; Pearson Education, Inc.: Hoboken, NJ, USA, 2010; pp. 648–721. [Google Scholar]
- Smith, S. Digital Signal Processing: A Practical Guide for Engineers and Scientists; Newnes: Boston, UK, 2003. [Google Scholar]
- Saleh, B.E.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Trefethen, L.N.; Bau, D. Numerical Linear Algebra; Siam: Philadelphia, PA, USA, 2022; Volume 181. [Google Scholar]
- Zhang, Y.; Li, Z.; Li, K. Complex-valued Zhang neural network for online complex-valued time-varying matrix inversion. Appl. Math. Comput. 2011, 217, 10066–10073. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Y.; Zuo, Q.; Dai, J.; Li, J.; Tang, W. A noise-tolerant zeroing neural network for time-dependent complex matrix inversion under various kinds of noises. IEEE Trans. Ind. Inform. 2019, 16, 3757–3766. [Google Scholar] [CrossRef]
- Hua, C.; Cao, X.; Xu, Q.; Liao, B.; Li, S. Dynamic Neural Network Models for Time-Varying Problem Solving: A Survey on Model Structures. IEEE Access 2023, 11, 65991–66008. [Google Scholar] [CrossRef]
- Dai, J.; Jia, L.; Xiao, L. Design and analysis of two prescribed-time and robust ZNN models with application to time-variant Stein matrix equation. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1668–1677. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.; Liu, B. Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process. Lett. 2013, 37, 189–205. [Google Scholar] [CrossRef]
- Lan, X.; Jin, J.; Liu, H. Towards non-linearly activated ZNN model for constrained manipulator trajectory tracking. Front. Phys. 2023, 11, 1159212. [Google Scholar] [CrossRef]
- Liao, B.; Zhang, Y. From different ZFs to different ZNN models accelerated via Li activation functions to finite-time convergence for time-varying matrix pseudoinversion. Neurocomputing 2014, 133, 512–522. [Google Scholar] [CrossRef]
- Xiao, L. A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation. Neurocomputing 2016, 173, 1983–1988. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y. Superior robustness of power-sum activation functions in Zhang neural networks for time-varying quadratic programs perturbed with large implementation errors. Neural Comput. Appl. 2013, 22, 175–185. [Google Scholar] [CrossRef]
- Liao, B.; Zhang, Y. Different complex ZFs leading to different complex ZNN models for time-varying complex generalized inverse matrices. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 1621–1631. [Google Scholar] [CrossRef]
- Xiao, L.; Tan, H.; Jia, L.; Dai, J.; Zhang, Y. New error function designs for finite-time ZNN models with application to dynamic matrix inversion. Neurocomputing 2020, 402, 395–408. [Google Scholar] [CrossRef]
- Lv, X.; Xiao, L.; Tan, Z.; Yang, Z. Wsbp function activated Zhang dynamic with finite-time convergence applied to Lyapunov equation. Neurocomputing 2018, 314, 310–315. [Google Scholar] [CrossRef]
- Li, Z.; Liao, B.; Xu, F.; Guo, D. A New Repetitive Motion Planning Scheme With Noise Suppression Capability for Redundant Robot Manipulators. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 5244–5254. [Google Scholar] [CrossRef]
- Liao, B.; Han, L.; Cao, X.; Li, S.; Li, J. Double integral-enhanced Zeroing neural network with linear noise rejection for time-varying matrix inverse. CAAI Trans. Intell. Technol. 2023, 9, 197–210. [Google Scholar] [CrossRef]
- Zhang, M. A varying-gain ZNN model with fixed-time convergence and noise-tolerant performance for time-varying linear equation and inequality systems. Authorea Prepr. 2023. Available online: https://www.techrxiv.org/doi/full/10.36227/techrxiv.16988404.v1 (accessed on 4 April 2024).
- Zhang, Z.; Deng, X.; Qu, X.; Liao, B.; Kong, L.D.; Li, L. A varying-gain recurrent neural network and its application to solving online time-varying matrix equation. IEEE Access 2018, 6, 77940–77952. [Google Scholar] [CrossRef]
- Han, L.; Liao, B.; He, Y.; Xiao, X. Dual noise-suppressed ZNN with predefined-time convergence and its application in matrix inversion. In Proceedings of the 2021 11th International Conference on Intelligent Control and Information Processing (ICICIP), Dali, China, 3–7 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 410–415. [Google Scholar]
AF | LAF | SBPSAF | SBPAF |
---|---|---|---|
Derivative near 0 point | Large | Normal | Larger |
Convergence | Fast | Normal | Faster |
Robustness | Strong | Weak | Normal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Wang, T.; Huang, Y. An Accelerated Dual-Integral Structure Zeroing Neural Network Resistant to Linear Noise for Dynamic Complex Matrix Inversion. Axioms 2024, 13, 374. https://doi.org/10.3390/axioms13060374
Yang F, Wang T, Huang Y. An Accelerated Dual-Integral Structure Zeroing Neural Network Resistant to Linear Noise for Dynamic Complex Matrix Inversion. Axioms. 2024; 13(6):374. https://doi.org/10.3390/axioms13060374
Chicago/Turabian StyleYang, Feixiang, Tinglei Wang, and Yun Huang. 2024. "An Accelerated Dual-Integral Structure Zeroing Neural Network Resistant to Linear Noise for Dynamic Complex Matrix Inversion" Axioms 13, no. 6: 374. https://doi.org/10.3390/axioms13060374
APA StyleYang, F., Wang, T., & Huang, Y. (2024). An Accelerated Dual-Integral Structure Zeroing Neural Network Resistant to Linear Noise for Dynamic Complex Matrix Inversion. Axioms, 13(6), 374. https://doi.org/10.3390/axioms13060374