On Voigt-Type Functions Extended by Neumann Function in Kernels and Their Bounding Inequalities
Abstract
:1. Introduction and Preliminaries
2. Extended Voigt-Type Functions , and
3. Functional Bounding Inequalities
4. Discussion and Further Comments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voigt, W. Zur Theorie der Beugung ebener inhomogener Wellen an einem geradlinig begrentzen unendlichen und absolut schwarzen Schirm. Gött. Nachr. 1889, 1, 1–33. [Google Scholar]
- Reiche, F. Über die Emission, Absorption und Intesitätsverteilung von Spektrallinien. Ber. Deutsch. Phys. Ges. 1913, 15, 3–21. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw–Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Srivastava, H.M.; Miller, E.A. A unified presentation of the Voigt functions. Astrophys. Space Sci. 1987, 135, 111–118. [Google Scholar] [CrossRef]
- Klusch, D. Astrophysical spectroscopy and neutron reactions: Integral transforms and Voigt functions. Astrophys. Space Sci. 1991, 175, 229–240. [Google Scholar] [CrossRef]
- Pathan, M.A.; Kamarujjama, M.; Alam, M.K. On multiindices and multivariables presentation of the Voigt functions. J. Comput. Appl. Math. 2003, 160, 251–257. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Pogány, T.K. Inequalities for a unified Voigt functions in several variables. Russian J. Math. Phys. 2007, 14, 194–200. [Google Scholar] [CrossRef]
- Khan, S.; Agrawal, B.; Pathan, M.A. Some connections between generalized Voigt functions with the different parameters. Appl. Math. Comput. 2006, 181, 57–64. [Google Scholar] [CrossRef]
- Parmar, R.K. Bounding inequalities for the generalized Voigt function. J. Anal. 2020, 28, 191–197. [Google Scholar] [CrossRef]
- Parmar, R.K.; Saravanan, S. Extended generalized Voigt–type functions and related bounds. J. Classical Anal. 2023, 21, 45–56. [Google Scholar] [CrossRef]
- Pathan, M.A.; Shahwan, M.J.S. New representations of the Voigt functions. Demonstr. Math. 2006, 39, 75–80. [Google Scholar] [CrossRef]
- Pogány, T.K.; Süli, E. Integral representation for Neumann series of Bessel functions. Proc. Amer. Math. Soc. 2009, 137, 2363–2368. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Pathan, M.A.; Kamarajjuma, M. Some unified presentations of the generalized Voigt functions. Commun. Appl. Anal. 1998, 2, 49–64. [Google Scholar]
- Srivastava, H.M.; Chen, M.P. Some unified presentations of the Voigt functions. Astrophys. Space Sci. 1992, 192, 63–74. [Google Scholar] [CrossRef]
- Baricz, Á.; Jankov Maširević, D.; Pogány, T.K. Integral representations for Neumann–type series of Bessel functions Iν, Yν and Kν. Proc. Amer. Math. Soc. 2012, 140, 951–960. [Google Scholar] [CrossRef]
- Baricz, Á.; Jankov Maširević, D.; Pogány, T.K. Series of Bessel and Kummer-Type Functions; Lecture Notes in Math; Springer: Cham, Switzerland, 2017; p. 2207. [Google Scholar]
- Watson, G.N. A Treatise on the Theory of Bessel Functions; University Press: Cambridge, UK, 1992. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series, and Products, 7th ed.; Corrected and Enlarged Edition Prepared by A. Jeffrey; Academic Press: New York, NY, USA, 2007. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press: Ultimo, Australia; Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Exton, H. On the reducibility of the Voigt functions. J. Phys. A. Math. Gen. 1981, 14, L75–L77. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Ortigueira, M.D. A coherent approach to non–integer order derivatives. Signal Process. 2006, 86, 2505–2515. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series. Direct Laplace Trandsforms; Gordon and Breach Science Publishers: New York, NY, USA, 1992; Volume 4. [Google Scholar]
- Jankov Maširević, D.; Pogány, T.K. Second type Neumann series of generalized Nicholson function. Results Math. 2020, 75, 14. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. London. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Vîjîitu, H. 103.19 Bernoulli’s inequality for negative exponents. Math. Gaz. 2019, 103, 316–317. [Google Scholar] [CrossRef]
- Parmar, R.K.; Pogány, T.K. On (p, q)-extension of further members of Bessel–Struve functions class. Miskolc Math. Notes 2019, 20, 451–463. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmar, R.K.; Pogány, T.K.; Sabu, U. On Voigt-Type Functions Extended by Neumann Function in Kernels and Their Bounding Inequalities. Axioms 2024, 13, 534. https://doi.org/10.3390/axioms13080534
Parmar RK, Pogány TK, Sabu U. On Voigt-Type Functions Extended by Neumann Function in Kernels and Their Bounding Inequalities. Axioms. 2024; 13(8):534. https://doi.org/10.3390/axioms13080534
Chicago/Turabian StyleParmar, Rakesh K., Tibor K. Pogány, and Uthara Sabu. 2024. "On Voigt-Type Functions Extended by Neumann Function in Kernels and Their Bounding Inequalities" Axioms 13, no. 8: 534. https://doi.org/10.3390/axioms13080534
APA StyleParmar, R. K., Pogány, T. K., & Sabu, U. (2024). On Voigt-Type Functions Extended by Neumann Function in Kernels and Their Bounding Inequalities. Axioms, 13(8), 534. https://doi.org/10.3390/axioms13080534