Application of the Averaging Method to the Optimal Control of Parabolic Differential Inclusions on the Semi-Axis
Abstract
:1. Introduction
2. Problem Statement
3. Preliminaries and Notation
4. Main Result
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grammel, G. Controllability of differential inclusions. J. Dyn. Control. Syst. 1995, 1, 581–595. [Google Scholar] [CrossRef]
- Kichmarenko, O.; Stanzhytskyi, O. Sufficient conditions for the existence of optimal controls for some classes of functionaldifferential equations. Nonlin. Dyn. Syst. Theory 2018, 18, 196–211. [Google Scholar]
- Patel, R.; Shukla, A.; Nieto, J.; Vijayakumar, V.; Jadon, S. New discussion concerning to optimal controlfor semilinear population dynamics systemin Hilbert spaces. Nonlinear Anal. Model. Control 2022, 27, 496–512. [Google Scholar] [CrossRef]
- Patel, R.; Vijayakumar, V.; Nieto, J.; Jadon, S.; Shukla, A. A note on the existence and optimal control for mixed Volterra-Fredholm-type integrodifferential dispersion system of third order. Asian J. Control 2023, 25, 1685–2437. [Google Scholar] [CrossRef]
- Johnson, M.; Raja, M.; Vijayakumar, V.; Shukla, A.; Nisar, K.; Jahanshahi, H. Optimal control results for impulsive fractional delay integro-differential equations of order 1 < r < 2 via sectorial operator. Nonlinear Anal. Model. Control 2023, 28, 468–490. [Google Scholar] [CrossRef]
- Bogoliubov, N.N.; Mitropolsky, Y.A. Asymptotic Methods in the Theory of Non-Linear Oscillations; Gordon and Breach Science Publishers, Inc.: New York, NY, USA, 1961. [Google Scholar]
- Plotnikov, V.A. Averaging Method in Control Problems; Lybid: Kiev, Ukraine, 1992. [Google Scholar]
- Kichmarenko, O.D.; Kasimova, N.V.; Zhuk, T.Y. Approximate solution of the optimal control problem for differential inclusions with rapidly oscillating coefficients. Math. Mech. Solids 2021, 26, 38–54. [Google Scholar]
- Kichmarenko, O.D.; Kapustian, O.A.; Kasimova, N.V.; Zhuk, T.Y. Optimal control problem for a differential inclusion with rapidly oscillating coefficients on the semiaxis. J. Math. Sci. 2023, 272, 267–277. [Google Scholar] [CrossRef]
- Zhuk, T.; Kasimova, N.; Ryzhov, A. Application of the Averaging Method to the Optimal Control Problem of Non-Linear Differential Inclusions on the Finite Interval. Axioms 2022, 11, 653. [Google Scholar] [CrossRef]
- Kasimova, N.; Zhuk, T.; Tsyganivska, I. Approximate solution of the optimal control problem for non-linear differential inclusion on the semi-axes. Georgian Math. J. 2023, 30, 883–889. [Google Scholar] [CrossRef]
- Kapustyan, V.O.; Kapustyan, O.A.; Mazur, O.K. Problem of optimal control for the Poisson equation with nonlocal boundary conditions. J. Math. Sci. 2014, 201, 325–334. [Google Scholar] [CrossRef]
- Grammel, G. Singularly perturbed differential inclusions: An averaging approach. Set-Valued Anal. 1996, 4, 361–374. [Google Scholar] [CrossRef]
- Grammel, G. Averaging of singularly perturbed systems. Nonlinear Anal. Theory Methods Appl. 1997, 28, 1851–1865. [Google Scholar] [CrossRef]
- Kichmarenko, O. Application of the averaging method to optimal control problem of system with fast parameters. Int. J. Pure Appl. Math. 2017, 115, 93–114. [Google Scholar] [CrossRef]
- Kichmarenko, O. Application of the Averaging Method to the Problems of Optimal Control for Ordinary Differential Equations on the Semiaxis. Ukr. Math. J. 2018, 70, 739–753. [Google Scholar] [CrossRef]
- Kapustyan, O.V.; Kapustyan, O.A.; Sukretna, A.V. Approximate stabilization for a nonlinear parabolic boundary-value problem. Ukr. Math. J. 2011, 63, 759–767. [Google Scholar] [CrossRef]
- Kapustian, O.A.; Kapustyan, O.V.; Ryzhov, A.Y.; Sobchuk, V.V. Approximate Optimal Control for a Parabolic System with Perturbations in the Coefficients on the Half-Axis. Axioms 2022, 11, 175. [Google Scholar] [CrossRef]
- Kapustyan, O.V.; Kasimova, N.V.; Sobchuk, V.V.; Stanzhytskyi, O.M. The averaging method for the optimal control problem of a parabolic inclusion with fast-oscillating coefficients on a finite time interval. Bull. Taras Shevchenko Natl. Univ. Kyiv. Phys. Math. Sci. 2024, in press.
- Nakonechnyi, O.; Kapustyan, O.; Chikrii, A. Approximate Guaranteed Mean Square Estimates of Functionals on Solutions of Parabolic Problems with Fast Oscillating Coefficients Under Nonlinear Observations. About Cybern. Syst. Anal. 2019, 55, 785–795. [Google Scholar] [CrossRef]
- Aumann, R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 1965, 12, 1–12. [Google Scholar] [CrossRef]
- Denkowski, Z.; Mortola, S. Asymptotic Behavior of Optimal Solutions to Control Problems for Systems Described by Differential Inclusions Corresponding to Partial Differential Equations. JOTA 1993, 78, 365–391. [Google Scholar] [CrossRef]
- Sell, G.R.; You, Y. Dynamics of Evolutionary Equations; Springer: New York, NY, USA, 2002. [Google Scholar]
- Lions, J.-L. Some Methods of Solving Non-Linear Boundary Value Problems; Dunod-Gauthier-Villars: Paris, France, 1969. [Google Scholar]
- Hermes, H. Calculus of Set Valued Functions and Control. J. Math. Mech. 1968, 18, 47–59. [Google Scholar] [CrossRef]
- Warga, J. Optimal Control of Differential and Functional Equations; Academic Press: New York, NY, USA; London, UK, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasimova, N.; Feketa, P. Application of the Averaging Method to the Optimal Control of Parabolic Differential Inclusions on the Semi-Axis. Axioms 2025, 14, 74. https://doi.org/10.3390/axioms14010074
Kasimova N, Feketa P. Application of the Averaging Method to the Optimal Control of Parabolic Differential Inclusions on the Semi-Axis. Axioms. 2025; 14(1):74. https://doi.org/10.3390/axioms14010074
Chicago/Turabian StyleKasimova, Nina, and Petro Feketa. 2025. "Application of the Averaging Method to the Optimal Control of Parabolic Differential Inclusions on the Semi-Axis" Axioms 14, no. 1: 74. https://doi.org/10.3390/axioms14010074
APA StyleKasimova, N., & Feketa, P. (2025). Application of the Averaging Method to the Optimal Control of Parabolic Differential Inclusions on the Semi-Axis. Axioms, 14(1), 74. https://doi.org/10.3390/axioms14010074