New Fixed-Point Results in Controlled Metric Type Spaces with Applications
Abstract
:1. Introduction
- (d1)
- if and only if ;
- (d2)
- ;
- (d3)
- .
- represents the set of real numbers.
- represents the set of natural numbers.
- 1.
- The sequence converges to some τ in if for every , there exists such that for all .
- 2.
- is a Cauchy sequence, if .
- 3.
- The space is said to be complete if every Cauchy sequence in Ω is convergent.
- (i)
- The open ball is
- (ii)
- The mapping is said to be continuous at if ∀, there exists such that .
2. Main Results
2.1. Fixed-Point Theorems for Caristi Contractions
- 1.
- (G-edge preserving)
- 2.
- There exists a function bounded from below satisfying
- , ,
- , ,
- , ,
- , ,
- , ,
- , ,
- , ,
- •
- For the edge , we have . Also, we obtain the same result in a similar manner for the edges and .
- •
- For the edge , we have .
- •
- For the edge , we have .
- •
- For the edge , we have .
- •
- For the edge , we have .
2.2. Fixed-Point Results for -Admissible Mappings
- (i)
- g is an upper semi-continuous mapping from the right;
- (ii)
- ;
- (iii)
- .
- φ is α-admissible with respect to β;
- if and , then ;
- there exists such that .
- 1.
- there exists a function such that, ∀, and with , we have
- 2.
- There exists such that, ∀, we have
- 3.
- If is a sequence in such that and , ∀, then for all ;
- 4.
- For all , for all , implies that
3. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux equations integrales. Fundam. Math. 1922, 3, 133181. [Google Scholar] [CrossRef]
- Deng, J.; Liu, X.; Sun, Y.; Zhou, M. Fixed Point Results for a New Rational Contraction in Double Controlled Metric-like Spaces. Mathematics 2022, 10, 1439. [Google Scholar] [CrossRef]
- Azmi, F.M. New fixed point results in double controlled metric type spaces with applications. AIMS Math. 2022, 8, 1592–1609. [Google Scholar] [CrossRef]
- Salimi, P.; Latif, A.; Hussain, N. Modified α-ϕ-contractive mappings with applications. Fixed Point Theory Appl. 2013, 2013, 151. [Google Scholar] [CrossRef]
- Shatanawi, W.; Pitea, A. Some coupled fixed point theorems in quasi-partial metric spaces. Fixed Point Theory Appl. 2013, 2013, 153. [Google Scholar] [CrossRef]
- Gupta, V.; Shatanawi, W.; Kanwar, A. Coupled fixed point theorems employing clr-property on v-fuzzy metric spaces. Mathematics 2020, 8, 404. [Google Scholar] [CrossRef]
- Mishra, A.; Raja, H. Study Of Fixed-Point Results In G-Metric Space And G- Cone Metric Space and Its Application. In Proceedings of the 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, Raigarh, India, 5–7 June 2024. [Google Scholar]
- Ali, F.; Ali, J.; Rodríguez-López, R. Approximation of fixed points and the solution of a nonlinear integral equation. Nonlinear Funct. Anal. Appl. 2021, 26, 869–885. [Google Scholar]
- Özger, F.; Temizer Ersoy, M.; Ödemiş Özger, Z. Existence of Solutions: Investigating Fredholm Integral Equations via a Fixed-Point Theorem. Axioms 2024, 13, 261. [Google Scholar] [CrossRef]
- Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Petruşel, A.; Rus, I. Fixed point theorems in ordered L-spaces. Proc. Am. Math. Soc. 2006, 134, 411–418. [Google Scholar] [CrossRef]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Fallahi, K.; Rad, G.S. The Banach Type Contraction for mappings on Algebraic Cone Metric Spaces Associated with an Algebraic Distance and Endowed with a Graph. Iran. J. Math. Sci. Inform. 2020, 15, 41–52. [Google Scholar] [CrossRef]
- Fallahi, K.; Rad, G.S. Fixed Points of a φ-G-Contractive Mapping with Respect to a c-Distance on an Abstract Metric Space Endowed with a Graph. Math. Notes 2019, 105, 781–788. [Google Scholar] [CrossRef]
- Bojor, F. Fixed points of Kannan mappings in metric spaces endowed with a graph. An. St. Univ. Ovidius Constanta 2012, 20, 31–40. [Google Scholar] [CrossRef]
- Souayah, N.; Mlaiki, N.; Mrad, M. The-Contraction Principle for Mappings on an-Metric Spaces Endowed With a Graph and Fixed Point Theorems. IEEE Access 2018, 6, 25178–25184. [Google Scholar] [CrossRef]
- Souayah, N.; Mrad, M. Some Fixed Point Results on Rectangular Metric-Like Spaces Endowed with a Graph. Symmetry 2019, 11, 18. [Google Scholar] [CrossRef]
- Souayah, N. Fractional Differential equation in partially ordered controlled metric spaces. Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 2022, 84, 81–88. [Google Scholar]
- Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 1976, 215, 241–251. [Google Scholar] [CrossRef]
- Karapinar, E.; Khojastech, F.; Mitrović, Z. A Proposal for Revisiting Banach and Caristi Type Theorems in b-Metric Spaces. Mathematics 2019, 7, 308. [Google Scholar] [CrossRef]
- Arandelović, I.D.; Aljohani, S.; Mitrović, Z.D.; Dokić, V.V.; Mlaiki, N. Fixed point theorem for extended nonlinear quasi-contractions on b-metric spaces. Results Appl. Math. 2024, 23, 100497. [Google Scholar] [CrossRef]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak ϕ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
- Kukic, K.; Shatanawi, W.; Gardaoevic-Filipovic, M. Khan and Ciric contraction principles in almost b-metric spaces. UPB Sci. Bull. Ser. A 2020, 82, 113–144. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra 1993, 1, 5–11. [Google Scholar]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled Metric Type Spaces and the Related Contraction Principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
- Ahmad, J.; Al-Mazrooei, A.E.; Aydi, H.; De la Sen, M. On Fixed Point Results in Controlled Metric Spaces. J. Funct. Spaces 2020, 2020, 2108167. [Google Scholar] [CrossRef]
- Al-Mazrooei, A.E.; Ahmad, J. Fixed Point Results in Controlled Metric Spaces with Applications. Mathematics 2022, 10, 490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souayah, N.; Hidri, L. New Fixed-Point Results in Controlled Metric Type Spaces with Applications. Axioms 2025, 14, 85. https://doi.org/10.3390/axioms14020085
Souayah N, Hidri L. New Fixed-Point Results in Controlled Metric Type Spaces with Applications. Axioms. 2025; 14(2):85. https://doi.org/10.3390/axioms14020085
Chicago/Turabian StyleSouayah, Nizar, and Lotfi Hidri. 2025. "New Fixed-Point Results in Controlled Metric Type Spaces with Applications" Axioms 14, no. 2: 85. https://doi.org/10.3390/axioms14020085
APA StyleSouayah, N., & Hidri, L. (2025). New Fixed-Point Results in Controlled Metric Type Spaces with Applications. Axioms, 14(2), 85. https://doi.org/10.3390/axioms14020085