Discrete Geometry—From Theory to Applications: A Case Study
Conflicts of Interest
References
- Eco, U. Inventing the Enemy; Houghton Mifflin Harcourt: Boston, MA, USA, 2012. [Google Scholar]
- Spivak, M. A Comprehensive Introduction to Differential Geometry 2; Publish or Perish Inc.: Berkeley, CA, USA, 1979. [Google Scholar]
- Hamilton, R. Three-manifolds with positive Ricci curvature. J. Differ. Geom. 1982, 17, 255–306. [Google Scholar]
- Hamilton, R. The Ricci Flow on Surfaces. AMS Contemp. Math. 1986, 71, 237–261. [Google Scholar]
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv 2002. [Google Scholar]
- Perelman, G. Ricci flow with surgery on three manifolds. arXiv 2003. [Google Scholar]
- Stone, D.A. A combinatorial analogue of a theorem of Myers. Ill. J. Math. 1976, 20, 551–554. [Google Scholar]
- Chow, B.; Luo, F. Combinatorial Ricci flows on surfaces. J. Differ. Geom. 2003, 63, 97–129. [Google Scholar]
- Gu, X.D.; Yau, S.-T. Computational Conformal Geometry; Higher Education Press and International Press: Beijing, China, 2008. [Google Scholar]
- Gao, G.; Gu, X.D.; Luo, F. Discrete Ricci flow for geometric routing. In Encyclopedia of Algorithms; Kao, M.-Y., Ed.; Springer: Berlin, Germany, 2016; pp. 556–563. [Google Scholar]
- Yin, X.; Jin, M.; Luo, F.; Gu, X.D. Discrete curvature flow for hyperbolic 3-manifolds. Emerg. Trends Vis. Comput. 2008, 5416, 38–74. [Google Scholar]
- Zeng, M.; Zhang, W.; Guo, R.; Luo, F.; Gu, X.D. Survey on discrete surface Ricci flow. J. Comput. Sci. Technol. 2016, 30, 598–613. [Google Scholar] [CrossRef]
- Gu, X.; Luo, F.; Sun, J.; Wu, T. A discrete uniformization theorem for polyhedral surfaces. arXiv 2016. [Google Scholar]
- Saucan, E. A metric Ricci flow for surfaces and its applications I. Geom. Imag. Comput. 2015, 1, 259–301. [Google Scholar] [CrossRef]
- Gu, X.D.; Saucan, E. Metric Ricci curvature for PL manifolds. arXiv 2013. [Google Scholar]
- Gromov, M. Metric Structures for Riemannian and Non-Riemannian Spaces. In Progress in Mathematics; Birkhauser: Boston, MA, USA, 1999. [Google Scholar]
- Lott, J.; Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 2009, 169, 903–991. [Google Scholar] [CrossRef]
- Sturm, K.-T. On the geometry of metric measure spaces. Acta Math. 2006, 196, 65–131. [Google Scholar] [CrossRef]
- Bonciocat, A.-I.; Sturm, K.-T. Mass transportation and rough curvature bounds for discrete spaces. J. Funct. Anal. 2009, 256, 2944–2966. [Google Scholar] [CrossRef]
- Morgan, F. Manifolds with density. Not. Am. Math. Soc. 2005, 52, 853–858. [Google Scholar]
- Corwin, I.; Hoffman, N.; Hurder, S.; Šešum, V.; Xu, Y. Differential geometry of manifolds with density. Rose Hulman Undergrad. J. Math. 2006, 7, 1–15. [Google Scholar]
- Li, W.; Gu, J.; Liu, S.; Zhu, Y.; Deng, S.; Zhao, L.; Han, J.; Cai, X. Optimal transport in worldwide metro networks. arXiv 2014. [Google Scholar]
- Ollivier, Y. Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 2009, 256, 810–864. [Google Scholar] [CrossRef]
- Ollivier, Y. A survey of Ricci curvature for metric spaces and Markov chains. Probab. Approach Geom. 2010, 57, 343–381. [Google Scholar]
- Bauer, F.; Jost, J.; Liu, S. Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. Math. Res. Lett. 2012, 19, 1185–1205. [Google Scholar] [CrossRef]
- Jost, J.; Liu, S. Ollivierís Ricci curvature, local clustering and curvature-dimension inequalities on graphs. Discret. Comput. Geom. 2014, 51, 300–322. [Google Scholar] [CrossRef]
- Loisel, B.; Romon, P. Ricci curvature on polyhedral surfaces via optimal transportation. Axioms 2014, 3, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Ni, C.-C.; Lin, Y.-Y.; Gao, J.; Gu, X.D.; Saucan, E. Ricci curvature of the Internet topology. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; pp. 2758–2766.
- Wang, C.; Jonckheere, E.; Banirazi, R. Wireless Network Capacity versus Ollivier-Ricci Curvature under Heat-Diffusion (HD) Protocol. In Proceedings of the American Control Conference (ACC), Portland, OR, USA, 4–6 June 2014.
- Sandhu, R.; Georgiou, T.; Reznik, E.; Zhu, L.; Kolesov, I.; Senbabaoglu, Y.; Tannenbaum, A. Graph curvature for differentiating cancer networks. Sci. Rep. 2015, 5, 12323. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, R.; Georgiou, T.; Tannenbaum, A. Market fragility, systemic risk, and Ricci curvature. arXiv 2015. [Google Scholar]
- Forman, R. Bochner’s method for cell complexes and combinatorial Ricci curvature. Discret. Comput. Geom. 2003, 29, 323–374. [Google Scholar] [CrossRef]
- Appleboim, E.; Saucan, E.; Zeevi, Y.Y. Ricci curvature and Flow for image denoising and superesolution. In Proceedings of 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 2743–2747.
- Sreejith, R.P.; Mohanraj, K.; Jost, J.; Saucan, E.; Samal, A. Forman curvature for complex networks. J. Stat. Mech. 2016. [Google Scholar] [CrossRef]
- Weber, M.; Saucan, E.; Jost, J. Characterizing Complex Networks with Forman-Ricci curvature and associated geometric flows. arXiv 2016. [Google Scholar]
- Weber, M.; Jost, J.; Saucan, E. Forman-Ricci flow for change detection in large dynamical data sets. arXiv 2016. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, D.; Saucan, E. Discrete Geometry—From Theory to Applications: A Case Study. Axioms 2016, 5, 27. https://doi.org/10.3390/axioms5040027
Gu D, Saucan E. Discrete Geometry—From Theory to Applications: A Case Study. Axioms. 2016; 5(4):27. https://doi.org/10.3390/axioms5040027
Chicago/Turabian StyleGu, David, and Emil Saucan. 2016. "Discrete Geometry—From Theory to Applications: A Case Study" Axioms 5, no. 4: 27. https://doi.org/10.3390/axioms5040027
APA StyleGu, D., & Saucan, E. (2016). Discrete Geometry—From Theory to Applications: A Case Study. Axioms, 5(4), 27. https://doi.org/10.3390/axioms5040027