Fractional Integration and Differentiation of the Generalized Mathieu Series
Abstract
:1. Introduction and Preliminaries
2. Fractional Integration of the Mathieu Series
- (a)
- If and , then
- (b)
- If and then
3. Fractional Differentiation of the Mathieu Series
- (a)
- If and , then
- (b)
- If , and , then
4. Concluding Remarks and Observations
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, Volume 204; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: New York, NY, USA, 2006. [Google Scholar]
- Kiryakova, V.S. Generalized Fractional Calculus and Applications; Pitman Research Notes in Mathematics Series; Longman Scientific and Technical: Harlow, UK; John Wiley and Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Functions: Theory and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications (“Nauka i Tekhnika”, Minsk, 1987); Gordon and Breach Science Publishers: Reading, UK, 1993. [Google Scholar]
- Srivastava, H.M.; Saxena, R.K. Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52. [Google Scholar] [CrossRef]
- Saigo, M. A remark on integral operators involvig the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Mathieu, E.L. Traité de Physique Mathématique, VI-VII: Théorie de L’élasticité des Corps Solides; Gauthier-Villars: Paris, France, 1890. [Google Scholar]
- Pogány, T.K.; Srivastava, H.M.; Tomovski, Ž. Some families of Mathieu a-series and alternating Mathieu a-series. Appl. Math. Comput. 2006, 173, 69–108. [Google Scholar] [CrossRef]
- Emersleben, O. Über die Reihe Math. Ann. 1952, 125, 165–171. [Google Scholar] [CrossRef]
- Cerone, P.; Lenard, C.T. On integral forms of generalized Mathieu series. JIPAM J. Inequal. Pure Appl. Math. 2003, 4, 1–11. [Google Scholar]
- Milovanović, G.V.; Pogány, T.K. New integral forms of generalized Mathieu series and related applications. Appl. Anal. Discret. Math. 2013, 7, 180–192. [Google Scholar] [CrossRef]
- Diananda, P.H. Some inequalities related to an inequality of Mathieu. Math. Ann. 1980, 250, 95–98. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Ž.; Leškovski, D. Some families of Mathieu type series and Hurwitz-Lerch zeta functions and associated probability distributions. Appl. Comput. Math. 2015, 14, 349–380. [Google Scholar]
- Tomovski, Ž.; Pogány, T.K. Integral expressions for Mathieu-type power series and for the Butzer-Flocke-Hauss Ω-function. Fract. Calc. Appl. Anal. 2011, 14, 623–634. [Google Scholar] [CrossRef]
- Baricz, Á.; Butzer, P.L.; Pogány, T.K. Alternating Mathieu series, Hilbert—Eisenstein series and their generalized Omega functions. In Analytic Number Theory, Approximation Theory, and Special Functions; Rassias, T., Milovanović, G.V., Eds.; In Honor of Hari M. Srivastava; Springer: New York, NY, USA, 2014; pp. 775–808. [Google Scholar]
- Choi, J.; Parmar, R.K.; Pogány, T.K. Mathieu-type series built by (p,q)—Extended Gaussian hypergeometric function. Bull. Korean Math. Soc. 2017, 54, 789–797. [Google Scholar]
- Choi, J.; Srivastava, H.M. Mathieu series and associated sums involving the Zeta functions. Comput. Math. Appl. 2010, 59, 861–867. [Google Scholar] [CrossRef]
- Elezović, N.; Srivastava, H.M.; Tomovski, Ž. Integral representations and integral transforms of some families of Mathieu type series. Integral Transforms Spec. Funct. 2008, 19, 481–495. [Google Scholar] [CrossRef]
- Pogány, T.K.; Parmar, R.K. On p-extended Mathieu series; submitted manuscript. arXiv, 2016; arXiv:1606.08369. [Google Scholar]
- Pogány, T.K.; Tomovski, Ž. Bounds improvement for alternating Mathieu type series. J. Math. Inequal. 2010, 4, 315–324. [Google Scholar] [CrossRef]
- Saxena, R.K.; Pogány, T.K.; Saxena, R. Integral transforms of the generalized Mathieu series. J. Appl. Math. Stat. Inform. 2010, 6, 5–16. [Google Scholar]
- Tomovski, Ž. Integral representations of generalized Mathieu series via Mittag-Leffler type functions. Fract. Calc. Appl. Anal. 2007, 10, 127–138. [Google Scholar]
- Tomovski, Ž. New integral and series representations of the generalized Mathieu series. Appl. Anal. Discret. Math. 2008, 2, 205–212. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Pogány, T.K. New upper bounds for Mathieu-type series. Banach J. Math. Anal. 2009, 3, 9–15. [Google Scholar] [CrossRef]
- Kiryakova, V. On two Saigo’s fractional integral operators in the class of univalent functions. Fract. Calc. Appl. Anal. 2006, 9, 159–176. [Google Scholar]
- Pohlen, T. The Hadamard Product and Universal Power Series. Ph.D. Thesis, Universität Trier, Trier, Germany, 2009. [Google Scholar]
- Srivastava, H.M.; Agarwal, R.; Jain, S. Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions. Math. Method Appl. Sci. 2017, 40, 255–273. [Google Scholar] [CrossRef]
- Srivastava, R.; Agarwal, R.; Jain, S. A family of the incomplete hypergeometric functions and associated integral transform and fractional derivative formulas. Filomat 2017, 31, 125–140. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Ltd.: Chichester, UK, 1985. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saxena, R.K.; Parmar, R.K. Fractional Integration and Differentiation of the Generalized Mathieu Series. Axioms 2017, 6, 18. https://doi.org/10.3390/axioms6030018
Saxena RK, Parmar RK. Fractional Integration and Differentiation of the Generalized Mathieu Series. Axioms. 2017; 6(3):18. https://doi.org/10.3390/axioms6030018
Chicago/Turabian StyleSaxena, Ram K., and Rakesh K. Parmar. 2017. "Fractional Integration and Differentiation of the Generalized Mathieu Series" Axioms 6, no. 3: 18. https://doi.org/10.3390/axioms6030018
APA StyleSaxena, R. K., & Parmar, R. K. (2017). Fractional Integration and Differentiation of the Generalized Mathieu Series. Axioms, 6(3), 18. https://doi.org/10.3390/axioms6030018