Neutrosophic Triplet v-Generalized Metric Space
Abstract
:1. Introduction
2. Preliminaries
- (i)
- d(a, b) 0
- (ii)
- d(a, b) = 0a = b;
- (iii)
- d(a, b) = d(b, a);
- (iv)
- d(a, b)d(a, )+d(, )+d(, )+ … + d(, )+ d(, b),
- (i)
- For nX, there exists neutral of “n” such that n#neut(n) = neut(n)#n = n,
- (ii)
- For nX, there exists anti of “n” such that n#anti(n) = anti(n)#n = neut(n).
- (i)
- a # bX
- (ii)
- (a, b) 0
- (iii)
- If a = b, then (a, b) 0
- (iv)
- (a, b) = (b, a)
- (v)
- If there exists any element c∊X such that(a, c) ≤(a, c#neut(b)), then(a, c#neut(b)) ≤(a, b) +(b, c).
3. Neutrosophic Triplet v-Generalized Metric Space
- (i)
- a#bX
- (ii)
- 0(a, b)
- (iii)
- if a = b, then (a, b) = 0
- (iv)
- (a, b) = (b, a)
- (v)
- If there exists elements a, b, , … , ∊ X such thatdv(a, b) ≤ dv(a, b#neut(uv)),dv(a, u2) ≤ dv(a, u2#neut(u1)),dv(u1, u3) ≤ dv(u1, u3#neut(u2)),… ,dv(uv−1, b) ≤ dv(uv−1, b#neut(uv));
- neut(K) = K, anti(K) = K for all K ∈ X. Also, (X, ∪) is an NTS. Then let
- : XxX→X be a function such that(K, M) =, where M ∈ X.
- (i)
- It is clear that K ∪ MX for K, M ∈ X.
- (ii)
- It is clear that(K, M) =0.
- (iii)
- If K = M, then(K, M) ==
- (iv)
- (K, M) =
- (v)
- it is clear({l}, {k, l})({l}, {k, l} ∪ {k}),dv({k}, {k, l}) ≤ dv({k}, {k, l} ∪ {l}),dv({k}, {l}) ≤ dv({k}, {l}∪ ∅),dv({l}, {k}) ≤ dv({l}, {k} ∪ ∅),dv(∅, {k}) ≤ dv(∅, {k} ∪ {l}),dv(∅, {l}) ≤ dv(∅, {l} ∪ {k}),dv∅, {k, l}) ≤ dv(∅, {k, l} ∪ {l}).
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smarandache, F. A Unifying Field in Logics, Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Reheboth, MA, USA, 1998. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, T.K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Şahin, M.; Uluçay, V.; Kilicman, A.; Olgun, N. On neutrosphic soft lattice. Afr. Matematika 2017, 28, 379–388. [Google Scholar]
- Kandasamy, W.B.V.; Smarandache, F. Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures; Hexis: Phoenix, AZ, USA, 2006; p. 219. [Google Scholar]
- Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F.; Vladareanu, L. Computation of Shortest Path Problem in a Network with SV-Trapezoidal Neutrosophic Numbers. In Proceedings of the 2016 International Conference on Advanced Mechatronic Systems, Melbourne, VIC, Australia, 30 November–3 December 2016; pp. 417–422. [Google Scholar]
- Şahin, M.; Olgun, N.; Uluçay, V.; Kargın, A.; Smarandache, F. A new similarity measure on falsity value between single valued neutrosophic sets based on the centroid points of transformed single valued neutrosophic numbers with applications to pattern recognition. Neutrosoph. Sets Syst. 2017, 15, 31–48. [Google Scholar] [CrossRef]
- Smarandache, F.; Ali, M. Neutrosophic triplet as extension of matter plasma, unmatter plasma and antimatter plasma. In Proceedings of the APS Gaseous Electronics Conference, Bochum, Germany, 10–14 October 2016. [Google Scholar]
- Smarandache, F.; Ali, M. The Neutrosophic Triplet Group and Its Application to Physics; Universidad Nacional de Quilmes, Department of Science and Technology, Bernal: Buenos Aires, Argentina, 2014. [Google Scholar]
- Smarandache, F.; Ali, M. Neutrosophic triplet group. Neural Comput. Appl. 2016, 29, 1–7. [Google Scholar] [CrossRef]
- Smarandache, F.; Ali, M. Neutrosophic Triplet Field Used in Physical Applications. (Log Number: NWS17-2017-000061). In Proceedings of the 18th Annual Meeting of the APS Northwest Section, Pacific University, Forest Grove, OR, USA, 1–3 June 2017. [Google Scholar]
- Smarandache, F.; Ali, M. Neutrosophic Triplet Ring and its Applications. (Log Number: NWS17-2017-000062). In Proceedings of the 18th Annual Meeting of the APS Northwest Section, Pacific University, Forest Grove, OR, USA, 1–3 June 2017. [Google Scholar]
- Şahin, M.; Kargın, A. Neutrosophic triplet normed space. Open Phys. 2017, 15, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Şahin, M.; Kargın, A. Neutrosophic triplet inner product space. Neutrosoph. Oper. Res. 2017, 2, 193–205. [Google Scholar]
- Smarandache, F.; Şahin, M.; Kargın, A. Neutrosophic Triplet G-Module. Mathematics 2018, 6, 53. [Google Scholar] [CrossRef]
- Bal, M.; Shalla, M.M.; Olgun, N. Neutrosophic triplet cosets and quotient groups. Symmetry 2018, 10, 126. [Google Scholar] [CrossRef]
- Şahin, M.; Kargın, A.; Çoban, M.A. Fixed point theorem for neutrosophic triplet partial metric space. Symmetry 2018, 10, 240. [Google Scholar] [CrossRef]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. (Debr.) 2000, 57, 31–37. [Google Scholar]
- Alamri, B.; Suzuki, T.; Khan, L.A. Caristi’s fixed point theorem and Subrahmanyam’s fixed point theorem in v-generalized metric. J. Funct. Spaces 2015, 2015, 709391. [Google Scholar] [CrossRef]
- Ramabhadra, S.I.; Madhusudana, R.J.; Rao, S.S. Conractions over generalized metric space. J. Nonlinear Sci. Appl. 2009, 2, 180–182. [Google Scholar]
- Suzuki, T. Generalized metric space do not have the compatible topology. Abstr. Appl. Anal. 2014, 2014, 458096. [Google Scholar] [CrossRef]
- Suzuki, T. Completeness of 3-generalized metric space. Filomath 2016, 30, 3575–3585. [Google Scholar] [CrossRef]
- Suzuki, T. The strongly compatible topology on v-generalized metric space. Ser. A Math. 2017, 112, 301–309. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şahin, M.; Kargın, A. Neutrosophic Triplet v-Generalized Metric Space. Axioms 2018, 7, 67. https://doi.org/10.3390/axioms7030067
Şahin M, Kargın A. Neutrosophic Triplet v-Generalized Metric Space. Axioms. 2018; 7(3):67. https://doi.org/10.3390/axioms7030067
Chicago/Turabian StyleŞahin, Memet, and Abdullah Kargın. 2018. "Neutrosophic Triplet v-Generalized Metric Space" Axioms 7, no. 3: 67. https://doi.org/10.3390/axioms7030067
APA StyleŞahin, M., & Kargın, A. (2018). Neutrosophic Triplet v-Generalized Metric Space. Axioms, 7(3), 67. https://doi.org/10.3390/axioms7030067