Characterizations of the Total Space (Indefinite Trans-Sasakian Manifolds) Admitting a Semi-Symmetric Metric Connection
Abstract
:1. Introduction
2. Lightlike Hypersurfaces
3. Semi-Symmetric Metric Connections
4. Recurrent, Lie-Recurrent, and Hopf Hypersurfaces
- (1)
- and (i.e., is an indefinite Kenmotsu manifold),
- (2)
- F is parallel in terms of the induced connection ∇ on M,
- (3)
- D and are parallel distributions on M, and
- (4)
- M is locally a product manifold , where is a null curve tangent to and is a leaf of the distribution D.
- (1)
- F is Lie-parallel,
- (2)
- and is an indefinite β-Kenmotsu manifold,
- (3)
- on , and
- (4)
- and .
5. Indefinite Generalized Sasakian Space Forms
- (1)
- M is recurrent,
- (2)
- is totally umbilical,
- (3)
- M is screen conformal,
- (4)
- , and
- (5)
- ,
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Friedmann, A.; Schouten, J.A. Uber die geometrie der halbsymmetrischen ubertragung. Math. Z. 1924, 21, 211–223. [Google Scholar] [CrossRef]
- Yano, K. On semi-symmetric metric connection. Rev. Roum. Math. Pures Appl. 1970, 15, 1579–1586. [Google Scholar]
- Duggal, K.L.; Sharma, R. Semi-symmetric metric connection in a semi-Riemannian manifold. Indian J. Pure Appl. Math. 1986, 17, 1276–1283. [Google Scholar]
- Begancu, A.; Duggal, K.L. Real hypersurfaces of indefinite Kahler manifolds. Int. J. Math. Math. Sci. 1993, 16, 545–556. [Google Scholar] [CrossRef]
- Prasad, R.; Tripathi, M.M.; Shukla, S.S. On Some special type of transSasakian manifolds. Riv. Mater. Univ. Parma 2009, 8, 1–17. [Google Scholar]
- De, U.C.; Sarkar, A. On ϵ-Kenmotsu manifolds. Hadron. J. 2009, 32, 231–242. [Google Scholar]
- Shukla, S.S.; Singh, D.D. On (ϵ)-Trans-Sasakian manifolds. Int. J. Math. Anal. 2010, 49, 2401–2414. [Google Scholar]
- Siddiqi, M.D.; Haseeb, A.; Ahmad, M. A Note On Generalized Ricci-Recurrent (ϵ,δ)-Trans-Sasakian Manifolds. Palestine J. Math. 2015, 4, 156–163. [Google Scholar]
- Oubina, J.A. New classes of almost contact metric structures. Publ. Math. Debr. 1985, 32, 187–193. [Google Scholar]
- Duggal, K.L.; Bejancu, A. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications; Kluwer Acad. Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Jin, D.H. Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold. Indian J. Pure Appl. Math. 2010, 41, 569–581. [Google Scholar] [CrossRef]
- Cǎlin, C. Contributions to Geometry of CR-Submanifold. Ph.D. Thesis, University of Iasi, Iasi, Romania, 1998. [Google Scholar]
- Jin, D.H. Special lightlike hypersurfaces of indefinite Kaehler manifolds. Filomat 2016, 30, 1919–1930. [Google Scholar] [CrossRef]
- De Rham, G. Sur la réductibilité d’un espace de Riemannian. Comment. Math. Helv. 1952, 26, 328–344. [Google Scholar] [CrossRef]
- Alegre, P.; Blair, D.E.; Carriazo, A. Generalized Sasakian space form. Israel J. Math. 2004, 141, 157–183. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, D.H.; Lee, J.W. Characterizations of the Total Space (Indefinite Trans-Sasakian Manifolds) Admitting a Semi-Symmetric Metric Connection. Axioms 2018, 7, 68. https://doi.org/10.3390/axioms7030068
Jin DH, Lee JW. Characterizations of the Total Space (Indefinite Trans-Sasakian Manifolds) Admitting a Semi-Symmetric Metric Connection. Axioms. 2018; 7(3):68. https://doi.org/10.3390/axioms7030068
Chicago/Turabian StyleJin, Dae Ho, and Jae Won Lee. 2018. "Characterizations of the Total Space (Indefinite Trans-Sasakian Manifolds) Admitting a Semi-Symmetric Metric Connection" Axioms 7, no. 3: 68. https://doi.org/10.3390/axioms7030068
APA StyleJin, D. H., & Lee, J. W. (2018). Characterizations of the Total Space (Indefinite Trans-Sasakian Manifolds) Admitting a Semi-Symmetric Metric Connection. Axioms, 7(3), 68. https://doi.org/10.3390/axioms7030068